
IEEE Second International Conference on Data Stream Mining & Processing
August 21-25, 2018, Lviv, Ukraine

978-1-5386-2874-4/18/$31.00 ©2018 IEEE 94

One Approach of Approximation for Incoming Data
Stream in IoT based Monitoring System

Vladyslav Alieksieiev
Department of Applied Mathematics
Lviv Polytechnic National University

Lviv, Ukraine
vladyslav.i.alieksieiev@lpnu.ua

Abstract— IoT devices and platforms are a fast growing
market. One can mention a number of businesses relying on
easy opportunity to build real-time monitoring systems using
modern software and IoT hardware solutions. However, the
growth has revealed a number of complex problems. Many
problems are in area of data processing and storing huge
volumes of information. Due to wide use of different kinds of
sensors, and even a sets of sensors within each single device,
on one hand, practitioners discover unpleasant effects of data
losses caused by data packages losses or delays while its
transition from sensor to server. On the other hand, huge
volumes of data require to use some big data approaches and
many startup projects feel the problem of lack of resources.
Many of them feel lack of data storage facilities or become
unable to support huge data sets due to lack of finance. The
paper is focused to research the problem approximation for
incoming data stream to make it smaller the volume of data to
be stored but to keep it possible to be used. A few approaches
to use such data compression via its approximation are
discussed with application to IoT based real-time monitoring
system.

Keywords— data compression, approximation algorithm,
data stream processing, IoT platform, big data

I. INTRODUCTION

A contemporary IT industry trends revealed many new
applications of data storages and an IoT became one of the
primary trends [1]. Both huge enterprises and small
businesses are now dependent from quality of data and
quality of data analytics [2]. Some new approaches to
understand data and the value of the data had appeared. The
industry stepped behind the relational databases and time
series has determined new approaches to store and process
data [3]. IoT technologies gave an opportunity to design
some new platforms for supporting business both with
surveillance tools and analytics software applications. This
research paper presents some discussion related to IoT bases
“real-time” monitoring systems. Common architecture of
such platforms are [4]:

• Device – a remote computer like Raspberry Pi or any
of its alternatives or some custom hardware device
that may include a set of sensors (business solution
may consist of a whole network of such devices).

• Internet – any kind of Internet wireless connection
via Wi-Fi, GPRS, 3G/4G or anything else supplied
with mobile network (business solution may
combine different types of Internet service providers
to establish connection).

• Cloud – any popular IoT platform to store and
process big data.

Adding some software solution to provide data analytics
to that IoT platform than it becomes a powerful business
tool supporting real-time monitoring. There is a number of
companies developing their own platforms or exploiting
powerful cloud services to provide their client with such
platform as a reliable business solution. Many researchers
and practitioners in area of data analysis declare statements
similar to [2]: “data accumulation can enable deeper insights
and help us to gain more experience and wisdom”. There are
many evidences of great performance of time series analysis
already and there is a number of solutions for time series
databases [3].

However, practical use of such system reveals some
serious problems. Many of these problems were predicted
earlier. For example, the problem of data uncertainty was
known, described and even has some categorization [5]. The
era of Big Data has just revealed the complexity of
problems, which came with those volume, variety and
velocity of big data. Recent researches denoted an
importance of data losses problem in monitoring systems [4]
and problems of storing big volumes of obsolete data in such
systems [6]. One may find some techniques to solve these
problems in an analytic manner [7-9]. Some techniques of
data clearing allows to aggregate data simultaneously [10],
[11].

Unfortunately, there are no common recipes yet in data
science to manage with big data sources of any kind. There
are some approaches and some of these approaches are well
developed, but in some particular cases, there appears the
specifics making it difficult or impossible to implement a
common solution. Current research can be considered as an
alternate or a supplement to those discussions presented in
[6]. Unlike to [6] it is offered here not to rely on clustering
or quantization, which is appropriate to process obsolete
data, but to use approximation as a reliable and a well-
developed technique of mathematics.

Generally, we still have the same problem of a large
number of devices each with a set of sensors generating
huge volume of data. The data from all the devices and all
the sensors come to a server (non-relational database).
Using these data for online monitoring system allows
making some assumptions to ease the solution of the
problems.

II. PREREQUISITES AND MEANS FOR SOLVING THE PROBLEM

Let’s define the primary task for the problem solution.
First, the aim of the research is to find a way to reduce the
number of values in the incoming data flow from the sensors
and not to lose the quality of understanding the scope.
Second, we’d like to keep some quantitative scope if

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua

95

possible or to have it in some approximation. Third, we can
discuss the ability to recover original data in cases it is
necessary. Nevertheless, the last option only remains the
option yet.

The matter is, if we consider a real-time monitoring
system having a primary target to notify about some critical
issues, then it is of less interest to see what exactly normal
conditions was surveyed. This allows us to ignore many
aspects of value changes within some normal boundaries.

Two sub-problems can be solved simultaneously: 1) an
approximation to store values in a database, and 2) an
approximation to reduce data volume at the node (peripheral
device) or an approximation “on-the-fly” to form smaller
packages to be sent to a server. The first problem is rather
simple, if to consider only the task to remove the excessive
data (to remove less informative values). The second
problem is more difficult and requires some actions at the
node. The difficulty is that the node will decide about
necessity of the values gathered from sensors. This should
be made very carefully not to lose an important data.
Therefore, the circumstances can be very important to
understand whether to implement the approximation at the
node. While we have a monitoring system with less
analytics purpose, we can assume each node (peripheral
device) to gather the same data with respect to its location.
This means both problems can be solved successfully.

Now, we can define two key requirements for
constructing an appropriate algorithm:

• Simplicity – the algorithm should be easy to
implement and fast enough to be used “on-the-fly”.

• Reliability – the algorithm should give a reliable
approximation for a data set and hold the information
about any abnormal values.

A. Incoming data flow (stream)
Let’s assume the incoming sequence of values to be݂ሺݐሻ with ݐ as a time. Measurements are made with an equal

time lapse ∆ݐ = ݐݏ݊݋ܿ . This means each next value ௡݂∶= ݂ሺݐ௡ሻ is obtained after a fixed period ݐ௡ାଵ = ௡ݐ ൅ ݐ∆
and ݊ = 0…∞. This allows considering values as a discrete
(Fig. 1). For the purpose of determinateness, the
renumbered values presented at Fig. 2. The curve of the
input sequence of values presented at Fig. 3. This curve is
similar to a signal and one can offer to use some techniques
of signal processing. There are many known methods of
signal processing and data compression applicable to
signals [12]. Unfortunately, we have no evidences of any
periodic behavior or repeatable oscillations to be confident
to implement those techniques of signal processing. For
example, many techniques rely on assumption about
definite periodicity in a signal and one of the hardest
situations is to use these techniques to process “white
noise”. Our “signal” is similar to “white noise”. There are
regular appearance of some unpredictable values from
sensors. Meanwhile each sensor has some “normal” range
of values. This means, there could be a senseless part of
values within that range, and some significant values outside
the range can be cut as an outliers.

Fig. 1. Input sequence of discrete values (incoming data stream) –
measurements with equal intervals of time Δt

Fig. 2. Number the sequence of values for certainty

Fig. 3. The curve of the input sequence of values (incoming “signal”)

B. Idea of the algorithm
All values in a data set can be divided into two sub-sets:

1) “maximums” and 2) “minimums”. The “maximums” are
the values greater than the previous ones. The “minimums”,
otherwise, are the values less than the previous ones. Both
the first and the last values in the data set can be marked
simultaneously as a “maximum” and a “minimum”. The
same simultaneous marking is possible with the
consequently equal values. However, this can be an option
for the case of equal values to have adequate presentation in
resulting approximation. If there were an oscillation
character observed, then it would be a rare situation. Thus,
the decision about marking the equal values to be made
according to necessity. The marking procedure result
presented at Fig. 4.

Next, the local extremums can be found within each sub-
set as shown at Fig. 5. Values number 1, 6, 18, 23, 25, and
27 are the local extremums among “maximums”. Values
number 1, 7, 15, 24, 26, and 27 are the local extremums
among “minimums”. Note, the first and the last values are
both marked as local extremums.

There can be two strategies to select local extremums:
1) a use of all extremums, 2) a use of selected extremums
only.

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua

96

Fig. 4. Split the whole set of values into 2 groups: “maximums” (red, top)
and “minimums” (blue, bottom)

Fig. 5. Extremum selection within each of 2 groups: “maximums” (red,
top) and “minimums” (blue, bottom)

According to a strategy of selection of local extremums,
one can receive different kind of approximation. Fig. 6 and
Fig. 7 present respectively the implementation of first and
second strategy. The first one looks to be more accurate,
compared to the second one. Nevertheless, each strategy has
some advantages and disadvantages, while both give a
rough view to data set and a good “compression” or
“consolidation”. As it was asserted in [13] the
approximation via extremums allows to recover signal using
“bell-shaped impulse approximation”.

Fig. 6. Approximation for all extremums: “maximums” (red, top) and
“minimums” (blue, bottom), approximation (green)

Fig. 7. Approximation for selected extremums – “maximums of
maximums” and “minimums of minimums”: “maximums” (red, top) and
“minimums” (blue, bottom), approximation (green)

In cases of necessity of further recover of original
profile, the algorithm can be replaced to that in [13].
However, in circumstances described above for the purpose
of a monitoring system, one may gain great benefits from
data consolidation.

III. SOLUTION OF THE EXAMINED PROBLEM

Hence, for certainty, let’s choose an approximation by
extremum in the form of a selected extremums (this mean to

use “maximum of maximums and minimums of minimums”
according to those shown in Fig. 7). Now, we can consider
how this algorithm is formally defined and what are the
cases it can be used (implemented).

A. Peculiarities of implementation of approximation with
extremums
There are two cases of possible application for

consolidation of data: 1) aggregation of data already stored
in the database, and 2) data aggregation “on-the-fly”, which
can be performed at the node. Both are equivalent to the
problems we established initially.

One should note that the offered approach for the
algorithm is quite convenient. It requires simultaneously
only a few values of data for calculations. This yield the
calculations “on-the-fly” with just one previous ௡݂ିଵ value
and one current ௡݂ value. It is also necessary to have a three
previous values to fix “maximums” (ଶ݂௠௔௫, ଵ݂௠௔௫, ଴݂௠௔௫)
and a three previous values to fix “minimums”
(ଶ݂௠௜௡, ଵ݂௠௜௡, ଴݂௠௜௡), having indexes 0, 1, and 2 to stand for
last, previous to the last and second previous values.

Another aspect is to have actual pair of values presenting
both the value and a timestamp. Sure, in case of fixed time
intervals ∆ݐ = for the values measurement, there is ݐݏ݊݋ܿ
no need to fix the timestamp. Even in case of a time interval
or a “window”, just the initial time ݐ଴ supplemented with
value order number is enough. However, when we disorder
the time series, we need to fix a timestamp for each value.
Anyway it is now possible to fix (to store) in the database
only the extremums and not the whole sequence of values.

B. The formal algorithm
Now it is possible to describe a formal algorithm with

the steps starting from new value ௡݂ has come.

1. A new value ௡݂ is obtained (if not then go to Step 3 –
the end of the algorithm), and make a data values “shift”
accordingly.

1.1. If the new value is greater than the previous ௡݂ ൐௡݂ିଵ then the value should be marked as
“maximum”: ଶ݂௠௔௫ = ଵ݂௠௔௫ , ଵ݂௠௔௫ = ଴݂௠௔௫ and ଴݂௠௔௫ = ௡݂ ,
and fix the time ݐଵ௠௔௫ = ଴௠௔௫ݐ ଴௠௔௫ݐ , = ௡ – the timeݐ
is needed further to fix the extremum (local
maximum).

1.1.1. If ଶ݂௠௔௫ ൏ ଵ݂௠௔௫ and ଵ݂௠௔௫ ൐ ଴݂௠௔௫ then the
value ଵ݂௠௔௫ሺݐଵ௠௔௫ሻ is an extremum: ௞݂௘௫௧௥ = ,ଵ௠௔௫ݐ] ଵ݂௠௔௫ሺݐଵ௠௔௫ሻ], ݇ = ݇ ൅ 1.

1.2. If the new value is less than the previous ௡݂ ൏ ௡݂ିଵ
then the value should be marked as “minimum”: ଶ݂௠௜௡ = ଵ݂௠௜௡ , ଵ݂௠௜௡ = ଴݂௠௜௡ and ଴݂௠௜௡ = ௡݂ ,
and fix the time ݐଵ௠௜௡ = ଴௠௜௡ݐ ,଴௠௜௡ݐ = ௡ – the timeݐ
is needed further to fix the extremum (local
minimum).

1.2.1. If ଶ݂௠௜௡ ൐ ଵ݂௠௜௡ and ଵ݂௠௜௡ ൏ ଴݂௠௜௡ then the
value ଵ݂௠௜௡ሺݐଵ௠௜௡ሻ is an extremum: ௞݂௘௫௧௥ = ,ଵ௠௜௡ݐ] ଵ݂௠௜௡൫ݐଵ௠௜௡൯], ݇ = ݇ ൅ 1.

1.3. If the new value is equal to the previous ௡݂ = ௡݂ିଵ
then the value should be marked both as
“maximum” and “minimum”:

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua

97

1.3.1. Execute actions of Step 1.1.

1.3.2. Execute actions of Step 1.2.

2. If ݇ = then the value is a limit (maximum allowed ܭ
value) and Step 2.1 to be execute, otherwise – Step 2.2.:

2.1. Fix the array of values ௄݂௘௫௧௥ (this means to save in
database or send the package to server). Note: it is
actually assumed here to have an array of pairs
“time–value” [ݐ௞, ௞݂].

2.2. Go back to Step 1.

3. Execute Step 2.1 over the array of values ௄݂௘௫௧௥ (means
to process the rest of the values not fixed yet) and finish
the algorithm execution.

IV. RESULTS AND DISCUSSION

The algorithm of approximation by extremums is very
easy to understand, easy to implement, and easy to support.
There are some problems, and the primary problem is, that
the algorithm represents some kind of compression with
losses. Nevertheless, those conditions of its application for
a monitoring system match the key demand to keep the
outliers and not to consider the inner normal range of values
(due to its senseless in a common way).

However, there are some approaches to supply ability of
approximate signal recovery in case of application of some
special techniques. This can a very promising approach for
many data science purposes, for IoT based platforms. Due
to serious reduce of necessary volume for data storage, one
can find it possible to use traditional RDBMS in some areas
instead of big data sources.

The practical implementation of the algorithm to real
data set at temperature surveillance system gives the
average compression up to 10 times compared to initial
volume. On one hand, this result can be considered a very
particular case of a particular system, but, on the other hand,
it relies on a strong mathematics, so it is rather consistent.

V. CONCLUSION

The algorithm in general is quite simple to implement
both in case of aggregation of existing data from the

database, and in case of processing data “on-the-fly” at the
node (peripheral device). Parameter K allows to set some
value analysis “window”, so that one can adjust the accepted
volumes of data to be “fixed” (at the database server, or to
send the packet from node to server). This ease of use gives
a great opportunity to make a software solution even with a
“weak” hardware. Meantime, any of preferred task (at the
peripheral device or at server) can be solved successfully.

REFERENCES
[1] A. Oram. Scaling Data Science for the Industrial Internet of

Things. O’Reily, 2017.
[2] Y. Lin, and W. Xiao. Implementing a Smart Data Platform: How

Enterprises Survive in the Era of Smart Data. O’Reily, 2017.
[3] T. Dunning, and E. Friedman. Time Series Databases: New Ways to

Store and Access Data. O’Reily, 2015.
[4] V. Alieksieiev, and O. Gaiduchok, “About the problem of data

losses in real-time IoT based monitoring systems,” Proceedings of
International Scientific Conference “Mathematical Modeling”
(Borovets, Bulgaria, December 13–16, 2017), STUME “Industry
4.0”, Sofia, Bulgaria, Year I, vol. 1/1, pp.10–11, 2017

[5] C. J. Date. Database in Depth: Relational Theory for Practitioners.
O’Reilly, CA, 2005.

[6] V. Alieksieiev, G. Ivasyk, V. Pabyrivskyi, and N. Pabyrivska, “Big
data aggregation algorithm for storing obsolete data,” Proceedings
of International Scientific Conference “High Technologies.
Business. Society 2018” (Borovets, Bulgaria, March 12–15, 2018),
STUME “Industry 4.0”, Sofia, Bulgaria, Year II, iss. 1 (3), vol. I
“High Technologies”, pp.113–115, 2018.

[7] P. Bruce, A. Bruce, Practical Statistics for Data Scientists. O’Reily,
2017.

[8] M. Milton. Head First Data Analysis. O’Reily, 2009..
[9] A. B. Downey. Think Stats. O’Reily, 2015.
[10] A. Jain, M. Murty, and P. Flynn, “Data Clustering: A Review,”

ACM Computing Surveys, vol. 31, no. 3, pp. 264-323, 1999.
[11] D. Müllner, “Modern hierarchical, agglomerative clustering

algorithms,” ArXiv.org, 2011. – https://arxiv.org/pdf/1109.2378.pdf
[12] S. W. Smith. The Scientist and Engineer's Guide to Digital Signal

Processing. California Technical Publishing, 1997.
[13] N. V. Myasnikova, M. P. Beresten, and M. P. Stroganov,

“Approximation of multi extremum functions and its applications to
technical systems,” Herald of higher education institutions. Volga
region. Engineering sciences, no. 2 (18), pp.113–119, 2011.
[In Russian]

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua

