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Abstract— IoT devices and platforms are a fast growing 
market. One can mention a number of businesses relying on 
easy opportunity to build real-time monitoring systems using 
modern software and IoT hardware solutions. However, the 
growth has revealed a number of complex problems. Many 
problems are in area of data processing and storing huge 
volumes of information. Due to wide use of different kinds of 
sensors, and even a sets of sensors within each single device, 
on one hand, practitioners discover unpleasant effects of data 
losses caused by data packages losses or delays while its 
transition from sensor to server. On the other hand, huge 
volumes of data require to use some big data approaches and 
many startup projects feel the problem of lack of resources. 
Many of them feel lack of data storage facilities or become 
unable to support huge data sets due to lack of finance. The 
paper is focused to research the problem approximation for 
incoming data stream to make it smaller the volume of data to 
be stored but to keep it possible to be used. A few approaches 
to use such data compression via its approximation are 
discussed with application to IoT based real-time monitoring 
system. 
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I. INTRODUCTION

A contemporary IT industry trends revealed many new 
applications of data storages and an IoT became one of the 
primary trends [1]. Both huge enterprises and small 
businesses are now dependent from quality of data and 
quality of data analytics [2]. Some new approaches to 
understand data and the value of the data had appeared. The 
industry stepped behind the relational databases and time 
series has determined new approaches to store and process 
data [3]. IoT technologies gave an opportunity to design 
some new platforms for supporting business both with 
surveillance tools and analytics software applications. This 
research paper presents some discussion related to IoT bases 
“real-time” monitoring systems. Common architecture of 
such platforms are [4]: 

• Device – a remote computer like Raspberry Pi or any 
of its alternatives or some custom hardware device
that may include a set of sensors (business solution
may consist of a whole network of such devices).

• Internet – any kind of Internet wireless connection
via Wi-Fi, GPRS, 3G/4G or anything else supplied
with mobile network (business solution may
combine different types of Internet service providers
to establish connection).

• Cloud – any popular IoT platform to store and
process big data.

Adding some software solution to provide data analytics 
to that IoT platform than it becomes a powerful business 
tool supporting real-time monitoring. There is a number of 
companies developing their own platforms or exploiting 
powerful cloud services to provide their client with such 
platform as a reliable business solution. Many researchers 
and practitioners in area of data analysis declare statements 
similar to [2]: “data accumulation can enable deeper insights 
and help us to gain more experience and wisdom”. There are 
many evidences of great performance of time series analysis 
already and there is a number of solutions for time series 
databases [3]. 

However, practical use of such system reveals some 
serious problems. Many of these problems were predicted 
earlier. For example, the problem of data uncertainty was 
known, described and even has some categorization [5]. The 
era of Big Data has just revealed the complexity of 
problems, which came with those volume, variety and 
velocity of big data. Recent researches denoted an 
importance of data losses problem in monitoring systems [4] 
and problems of storing big volumes of obsolete data in such 
systems [6]. One may find some techniques to solve these 
problems in an analytic manner [7-9]. Some techniques of 
data clearing allows to aggregate data simultaneously [10], 
[11]. 

Unfortunately, there are no common recipes yet in data 
science to manage with big data sources of any kind. There 
are some approaches and some of these approaches are well 
developed, but in some particular cases, there appears the 
specifics making it difficult or impossible to implement a 
common solution. Current research can be considered as an 
alternate or a supplement to those discussions presented in 
[6]. Unlike to [6] it is offered here not to rely on clustering 
or quantization, which is appropriate to process obsolete 
data, but to use approximation as a reliable and a well-
developed technique of mathematics. 

Generally, we still have the same problem of a large 
number of devices each with a set of sensors generating 
huge volume of data. The data from all the devices and all 
the sensors come to a server (non-relational database). 
Using these data for online monitoring system allows 
making some assumptions to ease the solution of the 
problems. 

II. PREREQUISITES AND MEANS FOR SOLVING THE PROBLEM

Let’s define the primary task for the problem solution.
First, the aim of the research is to find a way to reduce the 
number of values in the incoming data flow from the sensors 
and not to lose the quality of understanding the scope. 
Second, we’d like to keep some quantitative scope if 
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possible or to have it in some approximation. Third, we can 
discuss the ability to recover original data in cases it is 
necessary. Nevertheless, the last option only remains the 
option yet. 

The matter is, if we consider a real-time monitoring 
system having a primary target to notify about some critical 
issues, then it is of less interest to see what exactly normal 
conditions was surveyed. This allows us to ignore many 
aspects of value changes within some normal boundaries. 

Two sub-problems can be solved simultaneously: 1) an 
approximation to store values in a database, and 2) an 
approximation to reduce data volume at the node (peripheral 
device) or an approximation “on-the-fly” to form smaller 
packages to be sent to a server. The first problem is rather 
simple, if to consider only the task to remove the excessive 
data (to remove less informative values). The second 
problem is more difficult and requires some actions at the 
node. The difficulty is that the node will decide about 
necessity of the values gathered from sensors. This should 
be made very carefully not to lose an important data. 
Therefore, the circumstances can be very important to 
understand whether to implement the approximation at the 
node. While we have a monitoring system with less 
analytics purpose, we can assume each node (peripheral 
device) to gather the same data with respect to its location. 
This means both problems can be solved successfully. 

Now, we can define two key requirements for 
constructing an appropriate algorithm: 

• Simplicity – the algorithm should be easy to
implement and fast enough to be used “on-the-fly”.

• Reliability – the algorithm should give a reliable
approximation for a data set and hold the information 
about any abnormal values.

A. Incoming data flow (stream)
Let’s assume the incoming sequence of values to be݂ሺݐሻ with ݐ as a time. Measurements are made with an equal 

time lapse ∆ݐ = ݐݏ݊݋ܿ . This means each next value ௡݂∶= ݂ሺݐ௡ሻ  is obtained after a fixed period ݐ௡ାଵ = ௡ݐ ൅  ݐ∆
and ݊ = 0…∞. This allows considering values as a discrete 
(Fig. 1). For the purpose of determinateness, the 
renumbered values presented at Fig. 2. The curve of the 
input sequence of values presented at Fig. 3. This curve is 
similar to a signal and one can offer to use some techniques 
of signal processing. There are many known methods of 
signal processing and data compression applicable to 
signals [12]. Unfortunately, we have no evidences of any 
periodic behavior or repeatable oscillations to be confident 
to implement those techniques of signal processing. For 
example, many techniques rely on assumption about 
definite periodicity in a signal and one of the hardest 
situations is to use these techniques to process “white 
noise”. Our “signal” is similar to “white noise”. There are 
regular appearance of some unpredictable values from 
sensors. Meanwhile each sensor has some “normal” range 
of values. This means, there could be a senseless part of 
values within that range, and some significant values outside 
the range can be cut as an outliers. 

Fig. 1. Input sequence of discrete values (incoming data stream) – 
measurements with equal intervals of time Δt 

Fig. 2. Number the sequence of values for certainty 

Fig. 3. The curve of the input sequence of values (incoming “signal”) 

B. Idea of the algorithm
All values in a data set can be divided into two sub-sets:

1) “maximums” and 2) “minimums”. The “maximums” are
the values greater than the previous ones. The “minimums”,
otherwise, are the values less than the previous ones. Both
the first and the last values in the data set can be marked
simultaneously as a “maximum” and a “minimum”. The
same simultaneous marking is possible with the
consequently equal values. However, this can be an option
for the case of equal values to have adequate presentation in
resulting approximation. If there were an oscillation
character observed, then it would be a rare situation. Thus,
the decision about marking the equal values to be made
according to necessity. The marking procedure result
presented at Fig. 4.

Next, the local extremums can be found within each sub-
set as shown at Fig. 5. Values number 1, 6, 18, 23, 25, and 
27 are the local extremums among “maximums”. Values 
number 1, 7, 15, 24, 26, and 27 are the local extremums 
among “minimums”. Note, the first and the last values are 
both marked as local extremums. 

There can be two strategies to select local extremums: 
1) a use of all extremums, 2) a use of selected extremums
only.
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Fig. 4. Split the whole set of values into 2 groups: “maximums” (red, top) 
and “minimums” (blue, bottom) 

Fig. 5. Extremum selection within each of 2 groups: “maximums” (red, 
top) and “minimums” (blue, bottom) 

According to a strategy of selection of local extremums, 
one can receive different kind of approximation. Fig. 6 and 
Fig. 7 present respectively the implementation of first and 
second strategy. The first one looks to be more accurate, 
compared to the second one. Nevertheless, each strategy has 
some advantages and disadvantages, while both give a 
rough view to data set and a good “compression” or 
“consolidation”. As it was asserted in [13] the 
approximation via extremums allows to recover signal using 
“bell-shaped impulse approximation”. 

Fig. 6. Approximation for all extremums: “maximums” (red, top) and 
“minimums” (blue, bottom), approximation (green) 

Fig. 7. Approximation for selected extremums – “maximums of 
maximums” and “minimums of minimums”: “maximums” (red, top) and 
“minimums” (blue, bottom), approximation (green) 

In cases of necessity of further recover of original 
profile, the algorithm can be replaced to that in [13]. 
However, in circumstances described above for the purpose 
of a monitoring system, one may gain great benefits from 
data consolidation. 

III. SOLUTION OF THE EXAMINED PROBLEM

Hence, for certainty, let’s choose an approximation by 
extremum in the form of a selected extremums (this mean to 

use “maximum of maximums and minimums of minimums” 
according to those shown in Fig. 7). Now, we can consider 
how this algorithm is formally defined and what are the 
cases it can be used (implemented). 

A. Peculiarities of implementation of approximation with
extremums
There are two cases of possible application for

consolidation of data: 1) aggregation of data already stored 
in the database, and 2) data aggregation “on-the-fly”, which 
can be performed at the node. Both are equivalent to the 
problems we established initially. 

One should note that the offered approach for the 
algorithm is quite convenient. It requires simultaneously 
only a few values of data for calculations. This yield the 
calculations “on-the-fly” with just one previous ௡݂ିଵ value 
and one current ௡݂ value. It is also necessary to have a three 
previous values to fix “maximums” ( ଶ݂௠௔௫, ଵ݂௠௔௫, ଴݂௠௔௫ ) 
and a three previous values to fix “minimums” 
( ଶ݂௠௜௡, ଵ݂௠௜௡, ଴݂௠௜௡), having indexes 0, 1, and 2 to stand for 
last, previous to the last and second previous values. 

Another aspect is to have actual pair of values presenting 
both the value and a timestamp. Sure, in case of fixed time 
intervals ∆ݐ =  for the values measurement, there is ݐݏ݊݋ܿ
no need to fix the timestamp. Even in case of a time interval 
or a “window”, just the initial time ݐ଴ supplemented with 
value order number is enough. However, when we disorder 
the time series, we need to fix a timestamp for each value. 
Anyway it is now possible to fix (to store) in the database 
only the extremums and not the whole sequence of values. 

B. The formal algorithm
Now it is possible to describe a formal algorithm with

the steps starting from new value ௡݂ has come. 

1. A new value ௡݂ is obtained (if not then go to Step 3 –
the end of the algorithm), and make a data values “shift”
accordingly.

1.1. If the new value is greater than the previous ௡݂ ൐௡݂ିଵ  then the value should be marked as 
“maximum”: ଶ݂௠௔௫ = ଵ݂௠௔௫ , ଵ݂௠௔௫ = ଴݂௠௔௫  and ଴݂௠௔௫ = ௡݂ , 
and fix the time ݐଵ௠௔௫ = ଴௠௔௫ݐ ଴௠௔௫ݐ , =  ௡ – the timeݐ
is needed further to fix the extremum (local 
maximum). 

1.1.1. If ଶ݂௠௔௫ ൏ ଵ݂௠௔௫  and ଵ݂௠௔௫ ൐ ଴݂௠௔௫  then the 
value ଵ݂௠௔௫ሺݐଵ௠௔௫ሻ  is an extremum: ௞݂௘௫௧௥ = ,ଵ௠௔௫ݐ] ଵ݂௠௔௫ሺݐଵ௠௔௫ሻ], ݇ = ݇ ൅ 1. 

1.2. If the new value is less than the previous ௡݂ ൏ ௡݂ିଵ 
then the value should be marked as “minimum”: ଶ݂௠௜௡ = ଵ݂௠௜௡ , ଵ݂௠௜௡ = ଴݂௠௜௡  and ଴݂௠௜௡ = ௡݂ , 
and fix the time ݐଵ௠௜௡ = ଴௠௜௡ݐ ,଴௠௜௡ݐ =  ௡ – the timeݐ
is needed further to fix the extremum (local 
minimum). 

1.2.1. If ଶ݂௠௜௡ ൐ ଵ݂௠௜௡  and ଵ݂௠௜௡ ൏ ଴݂௠௜௡  then the 
value ଵ݂௠௜௡ሺݐଵ௠௜௡ሻ  is an extremum: ௞݂௘௫௧௥ = ,ଵ௠௜௡ݐ] ଵ݂௠௜௡൫ݐଵ௠௜௡൯], ݇ = ݇ ൅ 1. 

1.3. If the new value is equal to the previous ௡݂ = ௡݂ିଵ 
then the value should be marked both as 
“maximum” and “minimum”: 
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1.3.1. Execute actions of Step 1.1. 

1.3.2. Execute actions of Step 1.2. 

2. If ݇ = then the value is a limit (maximum allowed ܭ
value) and Step 2.1 to be execute, otherwise – Step 2.2.:

2.1. Fix the array of values ௄݂௘௫௧௥  (this means to save in
database or send the package to server). Note: it is 
actually assumed here to have an array of pairs 
“time–value” [ݐ௞, ௞݂]. 

2.2. Go back to Step 1. 

3. Execute Step 2.1 over the array of values ௄݂௘௫௧௥  (means
to process the rest of the values not fixed yet) and finish
the algorithm execution.

IV. RESULTS AND DISCUSSION

The algorithm of approximation by extremums is very 
easy to understand, easy to implement, and easy to support. 
There are some problems, and the primary problem is, that 
the algorithm represents some kind of compression with 
losses. Nevertheless, those conditions of its application for 
a monitoring system match the key demand to keep the 
outliers and not to consider the inner normal range of values 
(due to its senseless in a common way). 

However, there are some approaches to supply ability of 
approximate signal recovery in case of application of some 
special techniques. This can a very promising approach for 
many data science purposes, for IoT based platforms. Due 
to serious reduce of necessary volume for data storage, one 
can find it possible to use traditional RDBMS in some areas 
instead of big data sources. 

The practical implementation of the algorithm to real 
data set at temperature surveillance system gives the 
average compression up to 10 times compared to initial 
volume. On one hand, this result can be considered a very 
particular case of a particular system, but, on the other hand, 
it relies on a strong mathematics, so it is rather consistent. 

V. CONCLUSION

The algorithm in general is quite simple to implement 
both in case of aggregation of existing data from the 

database, and in case of processing data “on-the-fly” at the 
node (peripheral device). Parameter K allows to set some 
value analysis “window”, so that one can adjust the accepted 
volumes of data to be “fixed” (at the database server, or to 
send the packet from node to server). This ease of use gives 
a great opportunity to make a software solution even with a 
“weak” hardware. Meantime, any of preferred task (at the 
peripheral device or at server) can be solved successfully. 
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