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Abstract—The paper considers the Bayesian analysis of the 
threshold stochastic volatility models. Studies of methods for 
analyzing stochastic volatility and improving models of 
stochastic volatility significantly improve the quality of forecast 
models and their estimates. Bayesian inference is performed by 
tailoring Markov chain Monte Carlo (MCMC) or sequential 
Monte Carlo (SMC) schemes that take into account the specific 
characteristics of models. The results of applying the method 
demonstrated in models heteroscedastic non-stationary 
processes. 
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I. INTRODUCTION

With the current economic instability, trading on stock 
markets carries a high risk. Therefore, the study of volatility, 
a statistical measure of stock prices, becomes instrumental 
and often indispensable. Currently, the study of volatility has 
become the basis of the financial economics, and one of the 
main tools of financial analysis and modeling, in particular. 
The ground of these studies lies in various probabilistic and 
statistical volatility models. Statistical volatility models are 
widely used in various financial tasks, such as the estimation 
of the standard deviation of the market returns, risk 
assessment, evaluation of the financial instruments, etc. 
There are dozens of volatility measurement methods, ranging 
from technical indicators such as the average true range 
(ATR), historical volatility, stochastic volatility of various 
types, standard deviation, etc. In addition to the financial 
analysis, conditional variance models are widely used in 
medical and technical diagnostic systems, risk assessment 
and management, social studies, etc. The study of stochastic 
volatility analysis methods and the improvement of the 
models` structure can substantially improve the quality of 
their forecasting and estimates. Therefore, this research is 
aimed at the investigation of the method of Bayesian analysis 
of the threshold stochastic volatility model. 

II. VOLATILITY  MODELING WAYS

The stochastic volatility model is based on the 
conditional heteroscedastic model. The conditional 
heteroscedasticity model (ARCH) was developed by Robert 
F. Engle [1] to create a model of inflation in the UK. This

model was later used for stock prices and exchange rates 
modeling [2]. The further development of ARCH is the 
generalized autoregressive conditional heteroscedasticity 
(GARCH) described in the investigation [3,4], which is still 
actively used for volatility forecasting [5, 6]. Models like 
GARCH allow recreating the phenomenon of volatility 
clustering (GARCH-effect). Parameters of ARCH / GARCH 
models are most often evaluated by the maximum likelihood 
estimation. One of the main disadvantages of the GARCH 
model is that the model memory is "not long enough" since 
its autocorrelation function (ACF) is characterized by the 
exponential decay. When the sum of coefficients of the 
model α + β is close to 1, the GARCH model degenerates 
into a non-stationary process, named an integrated 
generalized autoregressive conditionally heteroscedastic 
(IGARCH) process [2]. However, the latter model implies 
the dependence of volatility on the initial conditions which 
does not disappear within an infinite planning horizon, and 
therefore cannot be claimed to be an adequate reflection of 
the reality. An alternative approach is to use stochastic 
processes or models whose theoretical properties imply the 
presence of the so-called "long" memory. 

III. MODELS OF STOCHASTIC VOLATILITY

The main idea behind the stochastic volatility models is 
to increase the number of randomness sources. In conditional 
heteroscedasticity models, there is only one source of 
randomness, and the variation of the process is assumed to be 
dependent on its previous realizations in one form or another. 
An alternative way of modeling is to provide the price 
dynamics in the form of a simple model, like a differential 
equation. However, the volatility σ in this equation is rather a 
separate stochastic process, than a parameter. Consequently, 
there are two independent sources of randomness. The first 
stochastic volatility model was suggested by [11]. In 
particular, it assumed that logarithmic volatility is a process 
AR (1): 
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where μ is a positive constant, the inclusion of which allows 
to remove the free term from the equation for the sake of 
volatility, and φ is an autoregressive parameter that 
determines the memory in its relation to volatility. The main 
properties of autoregressive stochastic volatility models 
(ARSV) are investigated in [12,13]. 

The stochastic volatility model can be represented as 
follows: 

)()1()( 10 kykxkx +−ψ+ψ=          (2)

)1,0()(,)()()( Nkukukhky ≈=          (3)

),0()(),()(log)1(log 2σ≈ηη+φ+α=+ Nkkkhkh    (4)

where )(kx  is the statistical time series on which the model 
is based; )(ku  and )(kη  are independent of white noise 
stochastic processes. In some formulations, it is assumed that 

0ψ  and 
1ψ  are zero. The AR process (1) with the innovation 

)(ky  in the time series, as determined by the equation (2), 
explains the possibility of autoregression in the process )(kx . 

Threshold stochastic volatility model. Dispersion of the 
incomes tends to increase with the decrease of share prices. 
Such dispersion behavior can be described using a constant 
correlation coefficient ρ between )(ku  and )(kη , keeping all 
other assumptions unchanged. In the initial model defined by 
the equations (2) – (4), it is zero. Numerous empirical studies 
have shown that the coefficients ρ  are negative in the 
assumption that negative income is associated with a positive 
dispersion. 

This investigation suggests a new approach to fixing the 
time series dispersion asymmetry. Since it has been 
established that the dispersion tends to grow under the 
influence of bad news (disappointing global forecasts), then 
it is likely that the dynamics of autoregression in the 
equation (4) is determined by the income in a previous 
period of time. There is a hypothesis that the amount of 
income is dependent on the prior income (income sign). This 
kind of income asymmetry can also be taken into account, 
summing up the equation (2) to the piece-linear structure. 
Thus, it will be more natural to consider the threshold 
nonlinear structures than the linear autoregressive processes 
represented by the equations (2) – (4). 

Let`s define a set of Bernoulli random variables as 
follows: 
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The threshold stochastic volatility model takes the 
following form: 

)()1()( )(1)(0 kykxkx ksks +−ψ+ψ= (6)

)1,0(~)(,)()()( Nkukukhky =          (7)

),0(~)(),()(log)1(log 2
11 σηη+φ+α=+ ++ Nkkkhkh

kk ss   (8)

Like in the initial formulation, )(ku  and )(kη are 
stochastically independent. At a time 1−k , when there is an 
unexpected fall in prices due to the disappointing news, 

0)1( <−kx  and 0)( =ks  . On the contrary, if there is good 
news at the time 1−k , then 0)1( >−kx  and 1)( =ks . 
Therefore, the value )(ks  is determined by a magnitude sign 

)1( −kx . In the threshold stochastic volatility model, the 
values of the parameters αψψ ,, 10

and φ switch between
these two modes, which corresponds to the asset prices 
increases and falls. 

In the symmetric case, the two sets of parameters are 
identical. In particular, if  10 φ=φ , taking into account that 

10 α≥α , it follows that the dispersion will be higher when the 
prior income is negative, than when it is positive. 

The generalized model 0φ  may differ from 1φ . Indeed, the 
coefficient

tsφ  is describing the magnitude of the impact of

prior income on the current dispersion. If 0φ is more than 1φ , 
then the dispersion in previous periods will have a greater 
impact on the current dispersion after the price fall then after 
its rise. It is expected that in a similar hypothetical market 
situation, more time will be needed to “handle” the negative 
information that is contained in the previous dispersion data. 
This kind of asymmetry has not yet been sufficiently 
described in the researches related to the stochastic volatility 
analysis. 

IV. BAYESIAN ANALYSIS OF THE THRESHOLD STOCHASTIC
VOLATILITY MODEL

In the standard Bayesian conclusion, marginal posterior
distributions of unknown parameters are used. However, in 
many cases, the common posterior distribution or even 
marginal posterior distribution do not have closed-form 
solutions. It is also quite difficult to obtain the model values 
from the desirable posterior distribution. 

 Monte Carlo method-based approaches for Markov 
chains are Markov update algorithms aimed at obtaining a 
sample from the common posterior distribution. A separate 
case is Gibbs sampling. This method based on the Monte 
Carlo procedure is close to the approach based on the 
generation and reproduction of the data samples. 

Let`s make a sample selection of the unified distribution 
),...,( 1 mF ωω  where T

m ),...( 1 ωω=ω  is a vector of unknown 
parameters or hidden variables. With the known initial 
values ],...,[ )0()0(

1 mωω , the algorithm gives an estimate of 
the value )(

1
iω  with ),,...,|( )1()1(
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m
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Under non-rigid conditions, the vector of parameters 
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[ )()(
1 ,..., i

m
i ωω ] coincides with the distribution to the shared

distribution ),...,( 1 mF ωω  with ∞→i . 

Usually, the first M of the transitive iterations are 
skipped, and the last N of the iterations are taken for an 
approximate sample selection, dependent on ),...,( 1 mF ωω . 
The density of the probability distribution can be performed 
in two different ways. 

The first approach is the traditional assessment of core 
density distribution. The second approach is shown by the 
formula: 


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where j−ω  means all the parameters except jω . The point

estimates of any function ω , e.g. )(ωg , can also be found
using the Gibbs variable selection. One of the commonly 
used approaches is to use the posterior average, i.e. 
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The Gibbs sampler (sampling) can be used if it is 
possible to make a model with all conditional distributions. 
Gibbs specification and other models based on the Markov 
chain Monte Carlo (MCMC) methods are investigated in 
[15,16]. 

Let`s make a sample selection and calculate the 
distribution parameters following the given MCMC 
algorithm: 

(1) Calculate ),(kρ nk ,...,1= .

(2) Calculate 2σ  following the Metropolis step model
(random samples). 

(3) Calculate )(kh , nk ,...,1= , using multi-stage
discretization. 

(4) Calculate Tc),,,( 10 ψδψ  using its multidimensional
normal complete conditional distribution. 

(5) Calculate 0x  using its normal full conditional
distribution. 

(6) Calculate Td ),,,( φγα  using its multidimensional
normal complete conditional distribution. 

The completion of the algorithm iteration using the 
MCMC method. 

Dispersion smoothing and forecasting. To implement 
the procedure of the dispersion smoothing and forecasting, 
the Gibbs sample selection is used. After performing the 
iteration required for Gibbs sampling, one can get the 
approximation (approximate sample) from the common 
posterior distribution )|,,( 0 nn XHxf θ , marked as 

),,,....,,( )()()(
1

)(
0

ii
n

ii hhx θ NMMi ++= ,...,1 . Smoothed 
estimates )(kh ,( nk ,..,1= )  are the th estimates calculated 

from the marginal posterior distribution )|)(( nXkhf . The 
natural choice is the marginal posterior expectation, )|)(( nXkhE  which can be estimated as a sample mean: 
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To predict the future dispersion, using the currently 
available information, it is necessary to generate the samples 
from )|( njn Xhf +

 with 0>j . This can be effectively done

using the composition method. Thus, when j = 1 it can be 
written: 
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Therefore, NMMihn ++=+ ,...,1,)2(
1  as an approximate 

sample of )|( 1 nn Xhf + , is modeled using the log-normal

distribution density ).,,|( 1
)()(

1 ++ θ n
ii

nn shhf  Using this
sample, the estimates of the distribution density as the 

1+nh point estimates can be formed. This approach is 
generalized to calculate a multi-year forecast. 

It should be taken into account, that )()1( inx + , 
NMMi ++= ,...,1 calculated during the step 1, are model 

values with )|)1(( nXnxf + . If it is necessary to have an
extreme and percentile p-th forecast, let`s say, with p = 1 for 
estimating the Value-at-Risk (VaR) value on financial 
markets, then the sample )()1( inx + will provide the choice 
from the p-th empirical percentile. Obviously, as soon as the 

)(i
jnh +

from the distribution )|( njn Xhf +
 is known, the value

of the multi-year VaR  forecast can be also calculated. 

V. EXAMPLE OF STOCHASTIC VOLATILITY MODELS USAGE

As an example of the stochastic volatility usage, the
following model can be presented. A model of the stochastic 
volatility can be used to make a formal description of the 
mental dispersion on the market in case of financial risk 
estimation. That can be done in the following way. 
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To calculate potential losses, the Value-at-Risk (VaR) 
method can be used. It is based on the estimates of the 
exchange rate volatility, calculated on the basis of the 
reciprocal stochastic volatility model. In general, a different 
kind of model, which complies with the suitability and 
adequacy of the process, can be used. To investigate the 
volatility estimate methodology and possible VaR loses, 
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other selections, generated with the MCMC procedure, can 
be used. In this case, the posterior  VaR mean value can be 
calculated by the equation: 

[ ] 
=

ππ =+
M

l

l kVaR
M

NVaRE
1

)( )(1|)1( r          (14)

where N is a number of values, which were actually used
from the amount M generated through the MCMC 
procedure; r  represents the available measurements of the 
key variable of the investigated process; )1()( +NVaR l  is the 
value of )(kVaR π

 with −l th  iteration of the  MCMC
procedure, which is calculated by the equation: 

( ) )()()( )(2/1)()( kkhkVaR lll
ππ ξ= (15)

where )()( kl
πξ  is the quantile of the generated distribution  
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The calculated sample of values 
MlkVaR l ...,,2,1),()( =π

 gives an opportunity to find the 
median value and the Bayesian tolerance intervals using the 
quantile of the distribution. 

This example shows how a nonexistent (heteroscedastic) 
process is generated with the following model: 

)()2(15,0)1(67,0
)2(095,0)1(23,0032,0

)()2()1(

)2()1()(

22
21

2
2

2
10

kkhkh
krkr

kkhkh

krkrkh

ξ

ξββ
ααα

+−−−+
+−−−+=

=+−+−+

+−+−+=

.  

To describe the key variable, the following equation is 
used: 

)1,(~)(),())(5,0(exp)(|)( εεε−= Nkkkhkhky . 

The generation of an innovative process (random 
variables) was performed using this combination of normal 
distributions: 

)25,2;95,0(25,0)55,0;11,0(75,0~)( −+ξ NNk .

According to the MCMC algorithm, the sequences of the 
pseudorandomized numbers in the overall amount of values 
(in 20000 algorithm iterations) was generated to estimate the 
parameters of the model.  The first 10,000 values were not 
further examined because they refer to the transitional stage 
of the estimation process, during which the chosen data 
generating method is configured. It means that 10000 values 
were actually used. Considering that 

)]([)]([ 2/1
0 kEkE ξα=ε=ε − , the posterior distribution for ε

can be calculated as follows: 

Mll
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where p is the number of distributions used to generate the 
mixture. 

The results of imitational modeling of the  non-stationary 
heteroscedastic process and  the estimation of the 
mathematical model parameters are given in the Table I. It 
contains posterior average estimates of the model parameters 
calculated using the proposed method. For purposes of 
comparison, it also includes the values of estimates 
calculated using a simple Gaussian distribution of the 
innovative random process. 

TABLE I. RESULTS OF IMITATIONAL MODELING OF THE NON-
STATIONARY HETEROSCEDASTIC PROCESS 

№ 
п/п 

Parameter and its 
value 

Suggested 
method 

Gaussian 
distribution 

Parame
ter 

True value Posterior 
average 

Posterior 
average 

1 0α 0,032 0,0297
(7,2%) 

0,0355 
(10,94%) 

2 1α 0,230 0,245
(6,5%) 

0,258 
(12,21%) 

3 2α -0,095 -0,0877
(7,7%)

-0,0998 
(5,05%) 

   4 1β 0,670 0,6581
(1,8%) 

0,749 
(11,79%) 

5 2β -0,150 -0,163
(8,7%) 

-0,132 
(12,01%) 

6 ε 0,0095 0,0078 
(17,9%) 

0,0114 
(20,0%) 

   7 Average error of 
estimate % 

8,30% 12,01%

The percentage in parentheses indicates the average 
estimate errors related to the exact values of the given model. 
It is evident that the parameter estimates, calculated 
according to the suggested method, are much closer to the 
true values. Thus, the average estimate error in percentages is 
8.3% and 12.01% accordingly. I.e. the estimate errors 
decreased 1.5 times approximately. Consequently, the 
alternative method, chosen for the comparison, allows 
getting the estimates, close to the true values of the used 
model. 

VI. CONCLUSION

Investigations related to the probabilistic-statistical 
volatility modeling are highly important due to the necessity 
of the forecasts estimates quality improvement and the 
decisions taken on their basis.  Therefore, a particular 
consideration is given to the method of Bayesian analysis of 
non-stationary (heteroscedastic) processes, which are widely 
distributed in various spheres of human life. The 
development of the volatility estimation methods based on 
the Bayesian analysis allows to significantly improve the 
quality of forecasts and their estimation. 

The usage of various modifications of Monte Carlo 
method-based approaches for Markov chains makes it 
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possible to correctly solve the issues of mathematical model 
parameters estimation within the complex structures, 
provided that there are random influences with arbitrary 
distributions. Further investigation of the Bayesian analysis 
may be aimed at improving the methods of estimating the 
parameters of various probabilistic and statistical volatility 
models with the help of adaptive estimation schemes; 
expanding the criteria basis for analyzing the quality of 
intermediate and final results; building specialized decision 
support systems for the analysis of nonlinear non-stationary 
processes in order to take substantiated financial and 
economic decisions. In particular, this applies to the current 
systems of risk management, analysis of the price formation 
processes on stock exchanges, investments and economical 
diagnostic. 
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