
IEEE Second International Conference on Data Stream Mining & Processing
August 21-25, 2018, Lviv, Ukraine

978-1-5386-2874-4/18/$31.00 ©2018 IEEE 534

Embedded Vision Modules for Text Recognition
and Fiducial Markers Tracking

Ievgen Gorovyi
It-Jim

Kharkiv, Ukraine
ceo@it-jim.com

Valerii Zozulia
It-Jim

Kharkiv, Ukraine
ceo@it-jim.com

Vitalii Vovk
It-Jim

Kharkiv, Ukraine
ceo@it-jim.com

Maksim Shevchenko
It-Jim

Kharkiv, Ukraine
ceo@it-jim.com

Dmytro Sharapov
It-Jim

Kharkiv, Ukraine
ceo@it-jim.com

Abstract—In the paper, two examples of embedded vision
modules are described. Firstly, it is demonstrated how fiducial
marker tracking algorithm can be adopted for operation on
Raspberry Pi. Usage of proposed ideas allows to achieve
around 60fps speed of binary marker tracking. Secondly, we
describe the problem of text detection and recognition in
outdoor environment. Experimental results indicate on
acceptable results and good potential to provide low-cost and
efficient embedded vision system for this purpose. Technical
details of both embedded vision modules are comprehensively
discussed.

Keywords—computer vision, Raspberry Pi, fiducial markers,
tracking, text recognition.

I. INTRODUCTION

Computer vision (CV) is a rapidly growing discipline
making machines to percept and understand their
surroundings as humans do [1]. There are a lot of practical
applications of CV in medicine, industry, entertainment and
many more [2]. CV algorithms can be run on different
hardware: desktops, mobile phones, various digital signal
processing (DSP) units. A particular interest is related with
usage of low-power hardware such as Raspberry Pi [3].
Indeed, Raspberry is light weight, cheap and widely
available in the market. Embedding of CV solutions
transforms it into mobile autonomous intellectual system.
Fig. 1 contains an example of Raspberry (Fig. 1a) and its
setup with camera (Fig. 1b).

(a) (b)

Fig. 1. Raspberry PI 3 and camera. (a) Raspberry PI Model 3B, (b)
Raspberry with camera

Research community made a lot of CV experiments with
Raspberry Pi. Example of multiple objects tacking can be
found in [4]. In [5] a compact stereo-vision system is

described. A full stereo matching pipeline is constructed
allowing to use the system as a depth-meter for outdoor
scenarios. A specific use case in given in [6], when bees
behavior is analyzed using embedded vision. Other examples
include face recognition [7], license plates detection and
recognition [8], autonomous cars applications [9], robotic
assistants [10] and many more.

In the paper, we study two important problems. Firstly, it
is demonstrated how to integrate and optimize fiducial
marker recognition algorithm for Raspberry. Secondly, we
describe the initial experimental results on number plate
recognition as a separate embedded vision module.

Section II contains description of algorithm for fiducial
marker recognition. Developed optimization steps are
described as well. Section III contains information about text
detection and recognition on Raspberry. Experimental
examples are included in each section.

II. FIDUCIAL MARKERS RECOGNITION

In this section, we describe a pipeline for recognition of
fiducial markers. Firstly, common steps for such process are
explained. After that, some specifically developed
improvements are discussed.

A. Main Steps of Marker Recognition Algorithm
Binary markers are used in many applications including

robotic navigation [11]-[13], augmented reality [14] and
logistics [15]-[17]. Examples of typically used binary
markers are shown in Fig. 2.

Fig. 2. Example of binary markers

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua

535

The key advantage of fiducial markers usage is that we
can properly build the marker structure in order to achieve
high recognition rate. Also, in contrast to image markers
[14], binary markers can be detected in the case more
challenging geometry conditions. In our experiments, we use
ArUco markers [18]. A typical marker from this collection is
7×7 blocks size containing 5×5 blocks inside (Fig. 2). A
great advantage of such markers is possibility to generate a
vocabulary of specific size.

A key idea of the marker recognition algorithm is to
detect marker on input video frame and recognize it by
comparison with previously formed database. Typically, this
involves several basic steps, as shown in Fig. 3.

Fig. 3. Binary marker detection pipeline

Firstly, image thresholding [1] is applied to input frame.
After that, contours are extracted from obtained binary image
[1]-[2]. At the next step, all located contours are
approximated by quadrangles. Finally, the binary codes are
extracted from filtered marker candidates and then matched
with existing markers database to find a proper coincidence
[2].

The challenge is that the default solution is quite slow.
Initial tests of performance on Raspberry give around 10
FPS. Fortunately, we have found the way to significantly
boost the performance. Key proposed ideas are described in
the next subsection.

B. Integration to Raspberry
It is common way to perform image thresholding before

contour finding by usage of adaptive threshold (because of
its robustness to image brightness changes). Since fiducial
markers are binary images, such operation works as edge
detector. We have found that usage of Canny edge detector
[1] instead of adaptive threshold (see Fig. 4) provides better
detection and code extraction quality, as well as has less
computational complexity. Additionally, median blurring is
applied to input image to suppress the noise.

(a) (b)

Fig. 4. Use of adaptive threshold (a) and canny edges detector (b) to prepare
frame for finding contours

One of the challenges for marker recognition is existence
of perspective distortions due to varying geometric
conditions. In order to extract marker code, inverse
perspective transformations is often applied to marker
candidates. This involves calculation of corresponding
transformation matrix, which is computational consuming.

In our version of the algorithm, we use improved
method for code extraction that avoids the perspective
transformation step. It only requires building of a grid equal
to marker size directly from found contours of marker
candidates, and testing pixels values on such grid (see
Fig. 5).

0 0 0 0

0 1 1 0

0 1 0 0

0 0 0 0

(a) (b) (c)
Fig. 5. Code extraction example.
Found contour (a), grid building (b) and extracted code (c).

Another challenge in code extraction is presence of glare
(Fig. 6a) or shadows on frame. In such cases wrong marker
code extraction may appear due to incorrect thresholding
parameter. For example, in Fig. 6 even dark regions of
markers have a very high pixel intensity, and constant
threshold leads to incorrect code extraction.

To increase the marker recognition robustness, we
propose to estimate the minimum and maximum value in
extracted marker image. Then threshold value is estimated
as:

() ,mnmnmxct +−⋅= (1)

where t is threshold value, mn and mx are minimum and
maximum values within found contour, c = 0.8 is am empiric
threshold coefficient.

(a) (b)

(c) (d)
Fig. 6. Frame with marker in glare (a), extracted pixels values (b), wrong
code extraction with fixed threashold (c) (value = 128), and correct code
extration with dynamically computed threshold (d) (value = 222,4)

The only requirement is that all true “white” pixels within
marker region have higher intensity than any “black” one.

C. Dynamic scaling and tracking
Image pre-scaling has significant effect on frame

processing time. For example, as it is shown in Fig. 7, pre-
scaling input VGA frame with scale factor 0.3 reduces total

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua

536

frame processing time more than 2 times with no loss in
processing quality. It was found that it is possible to
recognize ArUco marker even of only 30×30 pixels size for
7×7 bins. In this case, each marker bin will contain 4×4
pixels. Thus, for a particular marker we can find the scale
factor make it of size 30×30 pixels and still successfully
locate and recognize it:

s
mscale = (2)

where m = 30 is a marker required size; s is marker current
size.

x1.0 x0.7 x0.5 x0.3 x0.1

Scale

0

0.5

1

1.5

2

2.5

3

T
im

e
,
m

s

Detection algorithm
Resizing
Color conversion
Total

Fig. 7. Effect of pre-scaling on frame processing time.

Individual markers rescaling requires tracking of found
markers and saving their last found size and position to
process only small area of image or region of interest (ROI)
with corresponding scale factor. Having predicted marker
position and size we can build ROI around it. Because of
marker position estimation error (both because of model
discrepancy and marker relative velocity estimation error),
found region can contain only part of the marker, or even
totally miss it. In order to provide stable detection of marker,
found region is extended by a precomputed value. We have
found a specific empirical parameter allowing to find the
required extension region

(),,max hwce ⋅= (3)

where w and h are the current frame width and height, and
extension constant c = 0.075. Then, ROI for analysis is equal
to predicted marker’s bounding box extended at each edge by
value e:

,*,* eyyexx −=−=
.2*,2* eheightheightewidthwidth ⋅+=⋅+= (4)

One should notice that additional analysis of ROI
position and size should be performed to avoid violation of
frame borders. Described solution of marker ROI scaling
gives reasonable increase in frame processing performance
(Fig. 8). One can see that tracking gives boost in
performance in comparison with direct full frame analysis
approach in the most cases. Only in rare cases tracking takes
more time: when all markers are lost (because it requires full
frame processing, but also additional resources for tracks re-
initialization), and if integral ROIs’ area exceeds source
frame area. All of the improvements above provide increase

of FPS from 10 in initial setup to near 60 in final algorithm
version (see Tab.1) with high recognition accuracy.

TABLE I. ACHIEVED FRAME RATE ON DIFFERENT STAGES OF
ALGORITHM IMPROVEMENT

Initial
setup

Improved detection
and code extraction Pre-scaling Tracking

FPS 10 15-20 35-40 ~60

0 100 200 300 400 500 600

Frame number

0

2

4

6

8

10

12

14

16

F
ra

m
e

pr
oc

es
si

ng
 ti

m
e,

 m
s

Full frame processing
Processing with tracking

Fig. 8. Comparison of frame processing with (green) and without (red)
marker tracking.

Thus, we have developed and integrated fiducial marker
recognition solution on Raspberry.

III. AUTOMATIC TEXT RECOGNITION ON RASPBERRY

Another analyzed problem is related with text detection
and recognition on Raspberry. For this purpose, we have
made several outdoor videos with cars and tried to localize
and recognize number plates. In order to perform scene text
recognition, firstly we need to localize the number plate. To
solve this problem, we have utilized the extremal regions
(ER) detector [19]-[20]. The developed text detection
pipeline is the following (Fig. 9).

Fig. 9. Main steps of number plate detectoin algorithm

Firstly, contrast enhancement and adaptive thresholding
are applied. After that a set of morphological operations is
applied to filter out the noise (Fig. 10). After that letters
segmentation is used. Finally, Tesseract engine is used for
text recognition.

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua

537

Fig. 11. Example of number plate recognition

Fig. 11 contains an example of number plate detection
and recognition in Raspberry camera frames. In the near
future we are planning to optimize the developed algorithm.

IV. CONCLUSIONS AND FUTURE WORK

In the paper, we considered two examples of embedded
vision systems. Firstly, we comprehensively analyzed the
fiducial marker recognition framework and developed
several optimization steps. Experimental results indicate a
significant improvement from both accuracy and speed
points of view. In addition, we have shown an example of a
prototype of number plate recognition system. Initial results
show a good potential of production of low-cost and efficient
module for intelligent transportation applications.

REFERENCES
[1] R. Szeliski, Computer vision: Algorithms and Applications. London

etc.: Springer, Sept, 2010.
[2] D. Baggio, S. Emami, D. Escriva, K. Ievgen, J. Saragih and R.

Shikrot, Mastering OpenCV 3 - Second Edition. Birmingham:
Packt Publishing Ltd, Apr, 2017.

[3] https://www.raspberrypi.org
[4] A. Dziri, M. Duranton, and R. Chapuis, “Real-time multiple objects

tracking on Raspberry-Pi-based smart embedded camera,” Journal of
Electronic Imaging, vol. 25(4), 2016

[5] James Cooper et. al., “A Raspberry Pi 2-based Stereo Camera Depth
Meter,” International Conference on Machine Vision Applications,
Nagoya, Japan, pp. 274-277, May 8-12, 2017.

[6] Gang Jun Tu, Mikkel Kragh Hansen, Per Kryger, and Peter Ahrendt,
“Automatic behaviour analysis system for honeybees using computer
vision,” Computers and Electronics in Agriculture, vol. 122, pp. 10–
18, 2016.

[7] R. Mo, and A. Shaout, “Portable Facial Recognition Jukebox Using
Fisherfaces (Frj),” International Journal of Advanced Computer
Science and Applications, vol. 7, no. 3, pp. 9-14, 2016.

[8] K. Sri Sasikala, and Shakeel Ahmed, “Implementation of Number
Plate Extraction for Security System using Raspberry Pi Processor,”
International Journal of Engineering Research & Technology
(IJERT), vol. 5, iss. 03, pp. 317-321, March-2016.

[9] Gurjashan Singh Pannu, Mohammad Dawud Ansari, and Pritha
Gupta, “Design and Implementation of Autonomous Car using
Raspberry Pi,” International Journal of Computer Applications, vol.
113, no. 9, pp. 22-29, March 2015.

[10] Rizqi Andry Ardiansyah, “Design of An Electronic Narrator on
Assistant Robot for Blind People,” MATEC Web of Conferences, 42:
03013, 2016.

[11] Rafael Munoz-Salinas, Manuel J. Marin-Jimenez, Enrique Yeguas-
Bolivar, and R. Medina-Carnicer, “Mapping and localization from
planar markers”, Pattern Recognition, vol. 73, pp. 158-171, 2018.

[12] K. Horak, and L. Zalud, “Image Processing on Raspberry Pi in
Matlab,” Advances in intelligent systems and computing, p. 25, 4
November 2015.

[13] A. Babinec, L. Jurisica, P. Hubinsky, and F. Duchon, “Visual
Localization of Mobile Robot Using Artificial Markers,” Procedia
Engineering, vol. 96, pp. 1-9, 2014.

[14] Ievgen M. Gorovyi, and Dmytro S. Sharapov, “Advanced Image
Tracking Approach for Augmented Reality Applications,” Signal
Processing Symposium (SPSympo-2017), 12-14 September,
Jachranka, Poland, pp.266-270, 2017.

[15] Sherin M. Youssef, and Rana M. Salem, “Automated barcode
recognition for smart identification and inspection automation,”
Expert Syst. Appl., vol. 33, pp. 968-977, 2007.

[16] C. Ozgur, C. Alias, and B. Noche, "Comparing sensor-based and
camera-based approaches to recognizing the occupancy status of the
load handling device of forklift trucks,” Logist. J. Proc., pp. 1-9,
2016.

[17] C. Alias, C. Ozgur and B. Noche, “Monitoring production and
logistics processes with the help of industrial image processing,” 27th
Annual POMS Conference 2016, Orlando (FL), USA, 2016.
S. Garrido-Jurado, R. Muñoz-Salinas, F. J. Madrid-Cuevas, and M. J.
Marín-Jiménez, “Automatic generation and detection of highly
reliable fiducial markers under occlusion,” Pattern Recognition, vol.
47, iss. 6, pp. 2280–2292, June 2014.

[19] L. Neumann and J. Matas, “Real-Time Lexicon-Free Scene Text
Localization and Recognition,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 38, no. 9, pp. 1872-1885,
2016.

[20] L. Neumann and J. Matas, “Text Localization in Real-World Images
Using Efficiently Pruned Exhaustive Search,” ICDAR Proc.
International Conference on Document Analysis and Recognition, pp.
687-691, Sept, 2011.

[21] R. Smith, “An Overview of the Tesseract OCR Engine,” ICDAR
Proc. Ninth Int. Conference on Document Analysis and Recognition ,
pp. 629-633, 2007.

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua

