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Abstract — The paper presents a novel model of 
convolutional neural network for visual feature extraction, 
support vector machine for position prediction and 
information-extreme classifier for obstacle prediction with new 
training methods to build decision rules of autonomous 
navigation system for compact drones are presented in the 
paper. Sparse-coding neural gas algorithm for unsupervised 
training of the convolution filters, supervised incremental 
learning method for training the regression model and particle 
swarm optimization algorithm for training the classifier model 
are proposed. The complex criterion for choosing parameter of 
feature extractor model is considered. Simulation results with 
optimal model on test open datasets confirm the suitability of 
proposed algorithms for practical usage. 
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I. INTRODUCTION

Unmanned aerial vehicles (UAV) are widely used in 
precision agriculture, search and rescue operations, transport 
and aerial filming. Development information technology 
which lowers the demands on UAV hardware resources and 
improves the reliability of autonomous decision-making 
under constantly changing environmental conditions and 
variability of objects of interest allows to reduce the system’s 
weight and cost whilst simultaneously expanding the 
functionality of the onboard system. One of the ways to 
improve the functional efficiency of the UAV system is to 
use machine vision and machine learning to build data 
analysis models based on visual and inertial sensor data [1-
3]. 

The use of functional navigation systems based on the 
comparison of visual features requires the availability of a 
database of reference images, This makes is potentially 
unsuitable for situations requiring a rapid  response to 
changes in the environment [4]. Visual odometry and 
Simultaneous Localization And Mapping (SLAM) methods 
are less efficient in poorly textured scenes and in the 
presence of non-static elements in the field of view [5, 6]. 
Moreover, the deployment of these technologies requires 
significant computational resources, which limits their use in 
autonomous compact UAVs. 

Today, the convolutional neural network, consisting of a 
multilayer feature extractor based on convolution filters and 
decisive rules in the form of fully connected neural layers, is 
an undisputed leader among the image analysis models 
[7, 8]. However, the essential disadvantages of traditional 
convolutional neural networks lay in their inability to 
analyze the processes occurring in time, as well as the high 
computational complexity of the backpropagation-based 
learning algorithm, which makes adapting to changes in 
operating conditions difficult. Conversely, using 
unsupervised learning methods based on sparse-coding 
neural gas to train neural networks shows promise.  It 
reduces both the required quantity of labeled observations 
and computational load [9].  

This paper proposes a model of convolutional neural 
network for analysis of spatial-temporal patterns to be used 
in autonomous navigation and identification of obstacles 
under computational resource constraint. We also propose a 
training method for such network based on unsupervised 
learning combined with decision rules based on support 
vector machines [10] and intellectual information-extreme 
technology [11].  The results of parameter optimization and 
testing of proposed algorithms on real-life open source data 
sets are considered. 

II. MATERIALS AND METHODS

Let an annotated set of video frames be formed 
{ , , , , | 1, }=< > =t t t t t tс v x y z a t n , where tv  – frame image 
at time t and , ,t t tx y z  – camera coordinates obtained from 
the Global Positioning System (GPS) and converted to the 
North East Down (NED) local coordinate system, 

{ | 1, }∈ =o
t ra А r R – operator's response to the obstacle, 

where o
rA  denotes a recognition class that characterizes the 

obstacle. 

A structured vector of space-time parameters of the UAV 
navigation system operationin general has a structure : 

1 1 2 21 1 1 2,..., ,..., , ,..., ,..., , ,Ξ Ξ=< > Ξ + Ξ = Ξg e e e f f fξ ξ      (1) 
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where 
1 11,..., ,...,e e eξ Ξ< >  – genotype model parameters

which  affect the parameters of the feature extraction 
algorithms; 

3 31,..., ,...,f f fξ Ξ< >  – phenotypic model 
parameters which influence the decision rules. 

At the same time, known limitations on the 
corresponding model parameters are:  

(
1ξR

1 11,..., ,..., ) 0Ξ ≤e e eξ ;
2 2 21( ,..., ,..., ) 0R f f fξ ξ Ξ ≤ .

The process of machine learning of the navigation system 
is focused on determining the optimal coordinate values of 
the vector (1), which provide the maximum of the complex 
criterion 

min min

max

,= ⋅ ⋅
CEJ

E C
ε
ε

(2)

{ }* arg max ( )
G

g = J g , (3)

where E  –information criterion of learning effectiveness for 
the recognition of obstacle averaged by the set of classes; ε  
– the value of the mean square error of regression when
determining the change of camera coordinates in space; C  –
the criterion of computational complexity of feature
extraction algorithms; maxE , minε , minC  – the maximum 
possible value of the informational criterion of classifier 
training efficiency and the minimum allowable values of 
regression model error and the criterion of computational 
complexity of the system's algorithms, respectively. 

For the formation of the input mathematical description 
of the intelligent information system, KITTI Vision Dataset 
[8] training kits a containing both the frame sequence of the
image from the moving video camera and the movement data
along three coordinate axis reported by GPS and LiDaR [8].
To train the model, movement data is converted to the local
NED coordinate system and the relative movements of the
camera , ,Δ Δ Δх y z  are determined between adjacent video
frames.

The schematic of the intelligent navigational system for a 
compact UAV is shown in Fig. 1. In order to extract the 
feature representation of visual observations, it is proposed to 
use a convolutional neural network, using a multichannel 
image formed by a series sampling of successive video 
footage in grayscale format as input. The convolutional 
neural network has a multilayered structure to form a high-
level feature representation of observation results, with 
convolutional filters trained in unsupervised manner 
successively layer by layer. An information-extreme 
classifier trained in supervised mode on the training samples 
encoded by the corresponding high-level features is used for 
obstacle prediction and output of the corresponding reaction. 
The regression model in the framework of the support vector 
machine is used to map the visual features and the data from 
inertial sensors into the corresponding estimation of the 
displacement of the video camera in space. 

Fig. 2 shows the 4-layer architecture of the convolutional 
neural network, in the first layer of which there are 3D-filters 
of different scales: 5х5х 1K , 3х3х 1K  and 1х1х 1K . The 
number of filters is regulated by the parameter 2K . To 
preserve the same size of character maps formed by multiple-
scale filters, the technique of padding with zeros is used [8]. 
In the second and third layers, stride parameter of scanning a 
feature map with multiple-scale filters is 3 and 2, 
respectively. 

Fig. 1. A generalized scheme of intelligent navigational system of small 
size UAV 

Fig. 2 does not show the activation function applied to 
each feature map. We propose to use the Orthogonal 
Matching Pursuit algorithm [9] for calculating a response on 
each feature map and rectifier function max(0, )=y x , 
however, to avoid information loss, we can double the 
feature map using the following function: 

{max(0, ), max(0, )}= −y x x . 

An important step of data analysis is a preliminary 
normalization with the view to removing linear correlation of 
components of observation and the unification of primary 
feature representation. Data whitening with the use of the 
method of ZCA (Zero-phase Component Analysis) is one of 
the most common methods of preliminary data 
normalization. ZCA method implies performance of the 
following steps: 

1) calculation of mean selected value of features
μ = mean(X); 

2) calculation of co-variative matrix of selected
observations Σ: = cov(X);  

3) singular decomposition of co-variative matrix
Σ ≈ VDTT; 
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4) whitening of each observation by formula
1/2: ( ).T

j jх VD V х−= − μ  

Unsupervised learning of convolutional filters is 
proposed to be carried out in accordance with the algorithm 
of sparse-coding neural gas, which was considered and 
studied in [9]. The input data for the algorithm of sparse-
coding neural gas is the power of the set of the basis vectors 
M, the dimension of feature space N, 0 , finalλ λ – the initial
and final value of the neighborhood size, 0 , finalη η – the
initial and final values of the learning rate.  

Consider the main steps of the algorithm. 

1) Initialization of the dictionary of basis vectors
1( , ..., )= MD d d  by random numbers with uniform 

distribution; 

2) Initialization of the counter of training vectors : 1=t .

3) Choosing a random vector х  from the set of training
vectors Х . 

4) The normalization of vectors from the dictionary
1( , ..., )MD d d=  by bringing it to a unit length. 

Fig. 2. The architecture of the convolutional neural network for visual 
feature extraction in the UAVs navigation system  

5) Calculation of the current values of the neighborhood
size tλ  and learning rate tη : 

max/
0 0: ( / )= t t

t finalλ λ λ λ ; 

max/
0 0: ( / )= t t

t finalη η η η . 

6) The similarity calculation of the input vector х  to
the basis vectors 

kl
d D∈  for their sorting 

0 1

2 2 2( ) ... ( ) ... ( )
−

− ≤ ≤ − ≤ ≤ −
k M

T T T
l l ld х d х d х

7) Update the coordinates of the main vectors 
kl

d D∈
according to the Oja’s learning rule [9] 

: exp( / ) ( )= + − −
k k kl l t t ld d k y x ydη λ , :

k

T
ly c x= , 

0, 1k M= − . 

8) If maxt t< , then the increment of the counter : 1t t= +  
and go to the step 3. 

The information-extreme classifier for evaluation of the 
obstacle performs the adaptive discretization of the feature 
representation of dataset ( )

,{ | 1, ; 1, ; 1, }j
r i rх i N j n r R= = = on 

the basis of the coarse binary coding algorithm. This 
involves comparing the value of the i-th feature with the 
corresponding lower , ,L l iT  and upper , ,U l iT  thresholds of the 
asymmetric receptive field  l , which are calculated by the 
formulas  

,
, , ,max

max

1
 

= − 
 

i l
L l i iT x

δ
δ

, , , ,max=U l i iT x , 1,=l L

The formation of a binary training set 
( )
,{ | 1, * ; 1, ; 1, }= = =j

r i rb i N L j n r R  is carried out according 
to the rule 

 
( j)

L,l,i r ,i U,l,i( j)
r , l*N i

1, if T х T ;
b

0, else.+

 ≤ ≤= 


The calculation of the values of the coordinates of the 
binary support vector mх , relative to which container classes
are constructed on a radial basis, is carried out according to 
the rule 

 
( ) ( )
, ,

1 1 1,

1 11,    if   ;

0,   else.

r rn nR
j j

r l N i r l N i
j r jr l N i r

b b
b n n⋅ + ⋅ +

= = =⋅ +


>= 




 

Normalized modification of S. Kullback’s information 
measure is used as a criterion of our classifier's machine 
learning efficiency [11]: 

2
2 2

1 ( ) 2 ( )
log

log (2 ) log 10 ( )
r r r r

r
r r

E
r

 − + − + +
= ⋅  + + + + 

α β α β ς
ς α β ς

,(4) 

where ,r rα β  – false-positive and false-negative rates of
classification decisions regarding the affiliation of the input 
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vectors to the class o
rА ; ς  – any small positive number 

entered to avoid uncertainty when dividing by zero. 

The complexity of information-extreme machine learning 
increases faster than the square of the number of training 
vectors. Therefore, a reduction of multi-class classifier to a 
series of two-class classifiers is used to speed up training. 
The classifiers are constructed on the principle of "one-
against-one", with a total of  ( )M M 1 / 2 ⋅ −  two-class
classifiers constructed [11]. 

In the exam mode, the decision on the affiliation of the 
observation х  to one of the classes of set { }o

rA  is taken 
according to the geometric membership function [11] 

*

{ }
( ) max{ ( )},r rr
x xμ = μ

where ( )k xμ  is the membership function of vector x to the
container of class { }o

rA  which is calculated by the rule: 

*
,

1
*

( )
( ) exp ,

N L

r i i
i

r
r

x x
x

radius

⋅

=

 ⊕ 
 μ = −
 
 
 



where *
rradius  is the optimal radius of class container o

rA . 

To train the regression model ( )=y f x , output variable 
( ) ∈ty R  of which corresponds to the change of the 

coordinates of the camera ,Δ Δх y , or Δz , a set of 
( ) ( )

1( , ) =
t t n

tх y  training data, consisting of visual features and 
measurements of inertial sensors, is used, where ( ) ∈t Nх R . 
The regression function is linear in the secondary feature 
space and has the following form 

( ) ( , ( )) ,f x х b= ω ϕ + (5) 

: , .R H H′′ϕ → ω∈   (6)

where ω  and b  are empirical coefficients which can be 
obtained through training; H  – multidimensional space of 
secondary features. 

The coefficients ω  and b  can be found by minimizing 
the following formula: 

2* *

1

1min ( , , ) ( )
2

n

t t
t

R
=

ω ξ ξ = ω + Ψ ξ + ξ   (7)

( ) *

( )

*

( , ( ))

( , ( ))

, 0, 1, 2,..., , 0.

t
t

t
t

t t

y x b
x b y

i n

− ω ϕ − ≤ ε + ξ

ω ϕ + − ≤ ε + ξ

ξ ξ ≥ = ε ≥

(7) 

where Ψ  – coefficient of regularization; ξ , *ξ  – slack 
variable, which measures the measurement uncertainty from 
below and above, respectively; ε – the insensitivity of the 
loss function, which means that if ( )f x  is in the 
range ( )ty ± ε , then the measurement uncertainty is not taken 
into account.  

The optimization problem (7) is a quadratic programming 
problem with linear constraints, which can be solved by 
introducing Lagrange multipliers and applying the Karush-
Kuhn-Tucker conditions to solve a dual problem. [10]: 

* * * ( ) ( )

1
min ( , ) ( )( ) ( , )

n
t j

t t j j
t

R K x x
=

ν ν = ν − ν ν − ν +
* ( ) *

1 1
( ) ( )

n n
t

t t t t
t t

y
= =

+ ε ν + ν − ν − ν 
*

1
( ) 0

n

t t
t

v v
=

+ =  

0 , , 1, 2,...,t tv v t n
l
Ψ≤ ≤ =   (8)

where tv  and *
tv  are Lagrange multipliers associated with 

constraints (8); 

( ) ( ) ( ) ( )( , ) ( ) ( )= ⋅t j t jK x x x xϕ ϕ . 

A typical example of a kernel function is a polynomial 
kernel and a Gaussian kernel. In general, the regression 
function has the form 

* ( )

1
( ) ( ) ( , )

=

= − +
n

t
t t

t
f x v v K x x b  

Not all training samples can become support when 
support vectors are used for training the regression model. 
Only vectors on the boundary have the probability of 
becoming support. The incremental training of a regression 
model on support vectors can be realized by determining the 
convex border of discrete points when choosing a set of 
boundary vectors as a set of training ones. In this case, the 
convex border of discrete points is the border, which can 
surround all the discrete points, formed by the outermost 
point through connections. Therefore, after processing of the 
first sub-sample, the formed support vectors are compared 
with the vectors of the following subclasses at an angle of 
inclination, to form a plurality of boundary vectors, as 
vectors of the maximum inclination. Each step of the 
supplement may be accompanied by retraining. 

III. SIMULATION RESULTS AND DISCUSSION

To train the feature extractor, both the training and test 
video sequences of the KITTI Vision Dataset set are used, 
without taking annotations into account. To reduce the 
computational complexity of the algorithms, the images are 
compressed to a resolution of 200x200 pixels. In this case, 
the procedure is repeated for different values of parameters 

1K and 2K , which affect both the informative nature of the 
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feature representation and the computational complexity. We 
propose to measure complexity by the quantity of Mul and 
Add operations performed during the convolutional 
operations with an image or a feature map. For the network 
architecture shown in Fig. 2, the complexity can be 
calculated as  

2 1 2(2706472 4438784 )= +С K K K . (9) 

For the classifier and regression model, the optimal 
configuration of the convolutional extractor may be different 
as they are responsible for different tasks. Therefore, a 
complex criterion (2) offers a compromise from the point of 
view of the accuracy of the decision rules and the 
computational complexity of the extractor of visual features.  

For our support vectors of our regression model, we 
propose to use a Radial basis kernel in the following form 

2( ) ( ) ( ) ( )( , ) exp( ), 0= − ≥t j t jK x x x xγ γ  

where γ  – the kernel coefficient, the default value of which 
is 1 /= Nγ . 

The set of recognition classes { }o
rA  is describing the 

characteristic obstacles and the corresponding reaction 
commands, and has a power 5=R . The first class of 
recognition 1

oA  characterizes the normal state of following a 
prescribed trajectory. The classes 2

oA  and 3
oA  correspond to 

the left turn of 45 and 90 degrees respectively. The classes 
4
oA  and 5

oA  correspond to the right turn of 45 and 90 degrees 
respectively. The volume of the training samples of each 
class is 500=rn . 

The optimization of the parameters of the receptive field 
m,l,i{ }δ  and other genotype parameters for the information-

extreme classifier amounts to finding the extremum of the 
criterion function (4) in the hyperspace of solutions. For the 
purposes of this it is suggested to use a Particle Swarm 
Optimization algorithm (PSO) [11]. The effectiveness of 
each particle of a population algorithm, which lies in its 
proximity to the global optimum, is measured by means of a 
predetermined fitness function.  This role is fulfilled in our 
case by the training efficiency criterion (4). In this case, the 
following parameters of the population algorithm 
configuration are specified : maximum particle speed max,iV  = 
2, particles acceleration constants 1 2 1c c= = , the number of 
swarm agents 100an = , the coefficient of inertia 0,95w =  
and the number of iterations 3000ITERK = . 

The optimization of the phenotypic parameters of the 
decision rules (radii of container classes) can be carried out 
by the direct search with a given step, since the number of 
steps for such a search is relatively small. To identify the 
tendency of changing in average values of the partial and 
complex criteria during the growth of parameters 1K  and 

2K , which affect the size of the convolution extractor (Fig. 
2), a simulation was performed for the three fixed values of 
each of these parameters (Table I). 

TABLE I. DEPENDENCE OF PARTIAL AND COMPLEX CRITERIA ON 
EXTRACTOR PARAMETERS OF A FEATURES DESCRIPTION  K1  AND K2 

1K 2K max/E E min /ε ε  minC /C J 
3 4 0,083 0,112 1,000 0,009296
5 4 0,101 0,188 0,827 0,015703
7 4 0,098 0,200 0,705 0,013818
3 8 0,28 0,688 0,297 0,057214
5 8 0,29 0,756 0,264 0,057879
7 8 0,29 0,775 0,238 0,053491
3 16 0,39 0,968 0,082 0,030957
5 16 0,55 1,000 0,077 0,04235
7 16 0,51 1,000 0,072 0,03672

The analysis of table 1 shows that an increase in 
parameter values 1K  and 2K  in general leads to an increase 
in the reliability and computational complexity (9) of the 
decision rules of the classifier and the regression model. At 
the same time, the increase of the parameter 1K  has little 
effect on the efficiency of the classifier due to the decrease in 
the efficiency of the swarm search with a significant increase 
in the size of the feature space, while the regression error is 
equally sensitive to the value of parameters 1K  and 2K . 

However, given that with growth in 1K  and 2K the 
reliability of decision rules grows more slowly than the 
computational complexity use of complex criterion J offers a 
suitable compromise. That is, we consider the following 
parameter values to be optimal *

1 5=K and *
2 8=K . 

In the optimal configuration of the feature extractor, the 
average value of the information criterion of functional 
efficiency is 0, 29=E .  This corresponds to accuracy of 
95,2% for the training set, and 94% for the test dataset. The 
number of receptive fields per primary feature is L =3, 
chosen as the minimum value at which the information 
criterion (4) ceases to grow on the test dataset. Fig. 3 shows a 
graph of the change of the average information efficiency 
criterion (4) in relation to the number of iterations of the 
particle swarm search algorithm. 

The analysis of Fig. 3 shows that after a 1000th iteration 
growth of the information criterion (4) has begun to slow 
down, and after 2500th iteration remained virtually 
unchanged. Such a change in the criterion indicates that the 
further increase in the information criterion is achievable 
only with the increase in the informative nature of the 
features by increasing values of 1K  and 2K  or improving the 
structure of the extractor (Fig. 2).  

For a visual assessment of the effectiveness of the 
machine learning of the navigation system, a reference 
trajectory measured using GPS and LiDaR can be compared 
with a reconstructed trajectory obtained using a trained 
model.  

Fig. 4a shows the reference trajectory (dashed line) and 
the reconstructed trajectory (solid line) created by the 
proposed algorithms on the basis of the test data from the 
KITTI database [8]. Fig. 4b shows the results of a similar 
experiment, but using the model proposed in [8].  

The analysis of Fig. 4 shows that the accuracy of 
reconstruction of the trajectory in both cases is acceptable for 
practical use and does not differ significantly. Notably, 
however, the proposed model has much fewer parameters 
and allows the use of an unsupervised training instead of a 
computationally intensive gradient descent algorithm. 
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Fig. 3. A graph of the change of the average information efficiency 
criterion (4) in dependence from the number of iterations of the 
optimization swarm search algorithm  

а)  

b)   
Fig. 4. Reference and reconstructed trajectory: a – the developed model; b 
– the model proposed in the work [9] 

IV. CONCLUSION

1. The scientific novelty of the results is as follows:

– a new model for the autonomous navigation system of a
compact UAV is proposed for the first time. The constituent 
parts of the model are a feature extractor trained without 
supervision, a support vector regression model, which can be 
incrementally trained under supervision on the visual and 
inertial sensor data, and an information-extreme obstacle 
classifier, which learns to react to obstacles under 
supervision, which in turn reduces the computational 
resource requirements; 

– a model of a 4-layer convolutional network using as
inputs a series of successive frames which are interpreted as 
channels of one image and scanned by multiple-scale filters 
is proposed for the first time; 

– a method of unsupervised training of the convolution
filters based on sparse-coding neural gas, which allows 
training simultaneous with direct propagation of the signal 
without using the back error propagation is proposed for the 
first time; 

– a method for evaluating the effectiveness of the data
analysis model in navigation problems was improved with 

the application of multiplicative convolution of partial 
criteria.  This allows to select the optimal system parameters 
in the information and computational cost sense.  

2. The practical value of the obtained results for
unmanned aviation lies in the formation of a modern 
scientific and methodological basis for designing compact 
autonomous navigation systems for UAVs operating under 
resource and information constraints, and capable of 
learning. At the same time, the results of the simulation 
model confirm the high efficiency of the resulting decision 
rules for determining the coordinates in space and 
recognition of obstacles based on the video stream and 
inertial sensor data. 
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