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Abstract: Cyber physical systems (CPS) include alot of high
complexity computing such as dynamic analysis and
verification of continuous dynamic property, analysis and
verification of real-time property, analysis and verification
of spatial property, scheduling and fault tolerance. In this
paper, some of the research directions that we are taking
toward addressing some of the challenges involved in
building cyber physical systems have been described.
Taking into account the features of the cyber-physical
sensor systems, the basic model has been modified. Lattice
images in biopixds have been modified according to the
laws of discrete dynamics. The developed models take into
account the interaction of biopixds with each other by
antigen diffuson. The comparative analysis of CPS models
on rectangular and hexagonal lattices using difference
equations has been considered in the work. The results of
numerical smulations in the form of phase plane images
and lattice images of the probability of antigen to antibody
binding in the biopixds of cyber-physical biosensor systems
for antibody populations relative to antigen populations
have been received in the paper. The comparative analysis
of theresults of numerical modeling of mathematical models
of cyber-physical biosensor systems on rectangular and
hexagonal lattices using lattice difference equations with
delay has been considered.

Index Terms: cyber-physical systems, cyber-physical
model, difference equations, hexagonal lattice, rectangular
lattice, stability of the model.

. INTRODUCTION

Nowaday, the concept of creating cyber-physical
systems (CPS) for various fidds of human activity is
actively developing. CPS is considered as an intelligent
system that integrates physical objects, external devices,
processors, network equipment. The main purpose of
CPS is to monitor the behavior of physical objects as
components of such systems in red time. These are
systems in which cybernetic tools such as measuring,
computing, communication, control and execution
interact with physical processesin arbitrary objects[1].

CPSs are identified with the manifestation of the
fourth industrial revolution that takes place in the
modern world [2]. Thus, there is also a physical
opportunity to use technologies of “Internet of Things’
[3], whereit is necessary to use signals from sensors and

measuring devices. Thus, more and more publications
[4] appear in the literature that draw attention to the
modern concepts and offer the innovative solutions.
A. Platzer proposed an approach based on “dynamic
logic’, which describes and anayzes cyber-physical
systems [56]. In these works, the hybrid programs
(HPs) use simple programming language with the ssimple
semantics. HPs allow the programmer to refer directly to
the actual values of variables that represent the red
values and determine their dynamics.

CPSs are next next-generation smart systems,
which integrate computing, communications, and control
systems as a unification. In CPS, physical and software
components are deeply intertwined, involving transdis-
ciplinary approaches, merging the theories of cyber-
netics, mechatronics, and design and process science.
The key techniques of CPS include physical/mechanica
systems, embedded systems, sensors and actuators,
computer network and human machine interface. Thisis
a new generation of sensors that use biological materia
in a design that provides very high selectivity and alows
quickly and smply measuring [7-8].

Cyber-physical biosensory system (CPBSS) is a
CPS that uses new devices, andytical devices, namely
(bio)sensors, which are currently impacting our everyday
life (Figure 1), relies on several metrics such aslow cost,
high sensitivity, good sdlectivity, rapid response, real-
time monitoring, high-throughput, easy-to-make and
easy-to-handle properties. Fortunately, they can be
readily fulfilled by electrochemical methods. For
decades, dectrochemical sensors and biofuel cells
operating in physiological conditions have concerned
biomolecular science where enzymes act as biocatalysts.
CPBSS can be integrated into a variety of analytica
systems and into the human body for continuous
monitoring of biochemical parameters and metabolites.

An important stage in the design of CPBSS is the
development and research of their mathematica models
that adequately reflect the important aspects of the
gpatial structure of biopixels important in terms of the
research tasks. After all, the quality of the mathematical
model of CFBSS determines the effectiveness of
methods of its processing in the systems under study.
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Fig. 1. Schematic of the sensor array (including glucose,
|actate, sodium, potassium and temper atur e sensor s) for
multiplexed perspirationillugtration analysis for CPBSS (a);
a subject wearing a “ smart headband” and a*“ smart
wristband” during a stationary cycling (b); real time data
display of sweat analyte levels (c)

The design of cyber-physical biosensory systems
involves the sdection of parameters that would ensure
their operational stability. Such a task, in particular,
arises in the development of a biosensor, which includes
a two- and three-dimensional array of biopixes, and
which consists in finding appropriate parameters
describing hiological and diffusion processes. This
problem can be solved by developing and studying the
stability of the corresponding cyber-physical modd of
the biosensory system on hexagonal and rectangular
lattices using difference equations[9, 10].

1. CYBER-PHYSICAL BIOSENSORY SYSTEM

DEVELOPMENT OF A FUNCTIONAL SCHE-
ME OF DISCRETE DYNAMICS CPBSS ON REC-
TANGULAR LATTICE USING LATTICE DIF-
FERENCE EQUATIONSWITH DELAY.

Cyber-physical Biosensory System (CPBSS). The
definition of the term “Cyber-physical sensory system
(CPSS)” is given in [6]. This definition was introduced
for the industrial use of sensors. The genera definition
of the CPSS involves “a higher degree of combination,
system sharing, the ahility to use embedded systems in
the field of automation and compliance with existing
standards.” The considered approach is used for the
characterization of CPBSS, the functional scheme of
which is presented in Fig. 2 and alows to perform
numerical simulation of the system under study.

According to [6], the definitions and schemes for
CPBS are used to define the CPS. CPBSS converts
physically measured immunological parameters into the
digita information, which enables them to process
signals in time using certain algorithms. Thereisalso an
interaction with their own capabilities, regquirements,

internal data and internal tasksin terms of distribution to
the same or higher level of the hierarchy.
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Fig. 2. Functional scheme of CPBSS

The concept of CPS on the basis of the CPBSS
(Fig. 2), with the account of the features of intellectual
imaging sensors is used. With the additional skills the
sensor extends to CPBSS, which allows to receive more
diagnostic information about the object being studied.

Four main types of detection are used in biosensory
devices: dectrochemical (potentiometric, amperometric
or conductivity (capacitive), optical and thermometric
[10]). All types of sensors can be used as direct (not
marked) or as indirect (marked) biosensors or
immunosensors. Direct sensors are able to detect
physical changes during the formation of the immune
complex, while indirect use different levels of the
generated signal that enable more sensible and universal
detection in measuring systems.
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CPBSS refers to the high-intelligence information
systems. They use an affordable set of interfaces that
allow to recelve fast and accurate information of the
status and internal system data that should be available
to other CPSs. According to [11] CPBSS as a sdf-
organizing system requires comprehensive knowledge of
its own dynamic structure and infragtructure of the
general system. In order to make this, it is necessary to
determine the types of biosensory devices, taking into
account their functional application. For example,
biosensors can be used to assess critica states in
cardiovascular diseases, insulin values when measuring
glucose levels in blood and to identify quantitative
parametersin some pharmaceutical formulations.

CPS research is revealing numerous opportunities
and challenges in medicine and biomedical engineering.
These include intdligent operating rooms and hospitals,
image-guided surgery and therapy, fluid flow control for
medicine and biological assays, and the development of
physical and neura prostheses. Healthcare increasingly
relies on medica devices and systems that are networked
and need to match the needs of patients with specia
circumgtances. Thus, medica devices and systems will
be needed that are dynamically reconfigured, distributed,
and can interact with patients and caregivers in complex
environments. For example, devices such as infusion
pumps for sedation, ventilators and oxygen ddivery
systems for respiration support, and a variety of sensors
for monitoring patient condition are used in many
operating rooms.

In the article [11] the generd structure of CPSS is
proposed. While applying this scheme, in the case of
biosensors, three directions can be singled out: genera
information about the biosensor; measurements of
biologica parameters and skills in relation to unit
conversion and calibration; interaction with other
biosensors. In this way, the certain methods are
described that alow the biosensor to be described. In the
study of CPBSS, the programming language R was used.
Despite the great variety of programming languages used
in the devel opment of CPS (Assembly, C, C++, D, Java,
JavaScript, Python, Ada, etc. [12]), the language R is
widely used in many industries involved in machine
learning and visualization of data.

A. DISCRETE DYNAMICSCPBSSON
RECTANGULAR LATTICE USING LATTICE
DIFFERENCE EQUATIONSWTH DELAY.

For the CPBSS dynamics we use the mathematical
description with the help of nonlinear difference

equations with delay [10]. Let V;(n) be the
concentration of antigens, F, ;(n) isthe concentration of
antibodies in the biopixel (i, ), i,j=1N. The model
is based on such biological assumptions for an arbitrary
biopixd (i, j) .

1. The fertility rate p>0 for
population isintroduced.

the antigen

2. Antigens are detected, bound, and finaly
neutralized by antibodies with some probability vel ocity
y>0.

3. The constant mortdlity antibodies up; >0 is

introduced.

4. Itisassumed that when colonies of antibodies are
absent, colonies of antigens are regulated by a logistic
equation with a delay:

Vij(n+D) =1+ -6,V j(n-7))V,;(n), (D)
where f and 6, — positive numbers, and r >0 means
latency of the negative responce of the antigens
colonies.

5. Antibodies decrease the average rate of linear
growth of antigens with some delay in time; this
assumption is consigent with the fact that antibodies
cannot detect and bind antigens instantly; antibodies
have to spend units of time before they can reduce the
average growth rate of colonies of antigens;, these
aspects are incorporated into the dynamics of the
antigens by incorporating a value —yF ;(n—r), where
y isa positive constant that may vary depending on the
specific antibody and antigen colonies.

6. In the absence of antigen colonies, the average
growth rate of antibody colonies decreases exponentially
due to the magnitude —u; of the antibody dynamics. In
order to include the negative effects of antibody
clustering, a value -6¢F ;(n) in the dynamics of
antibodies is introduced.

7. Positive feedback nyV, ;(n—r), on average, the

antibody growth rate has a delay since the maturity of
adult antibodies can only contribute to the production of
antibody biomass; a delay r in nyV, j(n-r) can be

considered as a delay in the maturation of antibodies.
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Lo a(t) Lnoj(t)
/’—_‘H\‘i /-_-“\‘1
Pixel Pixel
(i,j=1) (i,j+1)
k‘----.._____...--‘/ ‘\-1.._____...-'/
D, D_
0wy (F) =it
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Fig. 3. Linear grid, which binds four adjacent pixels
inthe model (N> 0 —imbalance constant)
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8. Thediffusion of antigens from six adjacent pixels
is consdered (i-1,j), (i+%j), (,j-D, (,j+9)
(Fig. 3), where D > 0 — coefficient of diffusion.

9. Surface diffusion (motion of molecules on a solid
surface for immobilized molecules) is considered.

10. The definition of a conventional diffusion
operator is used in the case of surface diffusion with a
diffusion imbalance coefficient ne(0,1]. It means that
only n portion of the pixd antigens (i,j) can be
included in the diffusion process to any adjacent pixel
due to surface diffusion.

11. Antigen hinding to antibodies results in
fluorescence in the pixel. Fluorescence intensty is
assumed to be proportional to the number of contacts
between antigens and antibodies, i.e. kqV; ; (M)F ;(n) . It
isaso assumed that thepixd (i, j) isin fluorescence gateif
kaVi,j(MF ;(N)>2©4, whee there is some binding
threshd d at which the fluorescence phenomenon occurs.

12. The output sgnal s(n) is proportional to the

number of pixelsin the fluorescence state.

13. Information on the number of biological
measurements of valuesis calculated based on the output
signal.

On the basis of the above information, we will
write the mathematical model of |ate-antigen-antibody
interaction for a hexagona array of biopixels based on
the well-known Marchuk’s moddl [13-15] and use the

spatial operator § proposed in [16].
Vi (n+D =V, j(Nexp{B —yF, j(n-1)=5,V ;(n-n)}+ SV (0}, (2)
R (+D)=F (mexp{-u; +mV j(n-1)=6(F ()},

where SO is a discrete diffuson for a spatia

operator S.
Mode (3) isgiven by initial conditions (4):
V,;(N=V%i(n)=0, F;(nN=F5(n)=>0, n<0,
V.;(0), F;(0)>0.
For a square array, we use such a discrete diffusion
for a gpatial operator [20].
DAZN,, +Vyy 4V, —20V, ] i, =1
DA, +V,, 1 +V, 0+, -3V, ] i=1je2 N-1
DAV, 4 +Vo —20V,, | i, je2, N—1
DA’Z[\/HN +Vian +\/|,N—l_31\/|,N] ie2N-1j=N
SV} =1 DA 2Ny oy +Vign 1~ 20V ] 1=N, =N
DAV, 4 +Vi 1+ Vi 0tV =30V, ] i=N, je2 N-1
DAV 11 +Vi, —20Vi] =N, j=1
DA, 4 4V +V, -3V, ] €2 N-1, j=1
DA?N, , +Viy, +V, a4V, -4V, | i, je2 N-1

i+1] i+l

3

i1,

Each colony is exposed to antigens produced in
four adjacent colonies — two colonies in each direction,
separated by equal distances A. We use the boundary
condition v, . = ¢ for the edges of thearray i, j =0,N +1.

B. DISCRETE DYNAMICS CPBSS ON HEXAGONAL
LATTICE USING LATTICE DIFFERENCE
EQUATIONS

Considar a simple competing antigen-antibody
model for atwo-dimensional biopixel array that has been
proposed and investigated in [17].

av; < 4
#(t)z(ﬁ—}/Fi,j,k(t_T)_5“\/i,i,k(t_7))vi,i,k(t)+S{Vi,i,k};( )
dr ;. ®

Tz(_ﬂf WV (t=1) =6 F  (O)F O

The mathematical model (4) is given by the initial
functions (5):

Vo=V, 020 F0=F, 020 te[-0), (s
\/i,j,k(o)i F.Jk(o)>0

Discrete diffusion is used for the rectangular array
N x N for the spatial operator used in the work [18]:

é{vl i k}z {DA_ZN-Li Vi ik Vi tVi ek — 6Vi,j,k]’ (6)

v i,jelN.

Each colony is exposed to antigens produced in
four adjacent pixels, which are separated by equa
distances A.

We use boundary condition V,;, =0 for aray

nodesi,j=0,N+1,i+j+k=0.

The methods of sampling, permanence, and
stability research used in the work are based on the
approach developed in [19] for predator-prey systems,
extensible to finite lattice diffusion models.

System (4) without diffusion is approximated by
the following differential equation with piecewise
constant argentations.

Tty - -5,Y, (e h- DM, 0. ()
Pl (o, (- )5, (R

for te[nh,(n+1hlneN.
Let usdenotethat [t/h]=n, [t/h]=reN.
Let'sintegrate the last system (7) by [nh,t) , Where
t <(n+1)h, then (6) can berewritten as.

dVije B o ~
a —(ﬁ yF.;«(nh=rh)=5,V , (nh rh))\/i’j’k(t), @©
dFi,é,tk(t) _ (— pe +nV,  (nh=rh)=§, Fi,;,k(nh))ﬁj,k(t).

The notation
F. (N =F  (nh), whichresultsin:

is entered V., (n)=V,;,(nh),

\/i,j,k(t):\/i,j,k(n)exp{ﬁ_ylzi,j,k(n_r)_Su\/i,j,k(n_r)}’ (9)
Fi,j,k(t) = Fi,j,k(n)exp{_“f +ny\/i,j,k(n_r)_6f Fi,j,k(n)} .
Considering t — (n+1)h can smplify system (9)

by adding diffusion to the first equation. The result is a
discrete anal og continuous time system (4) in the form:
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Viic(+) =V, (n)x

XeXp{ﬁ_VFi,j,k(n_r)
Fix(n+)=F;, (n)x

xeXp{—pf MV (n-r)-5; Fiix (n)} .

Addition of diffuson is peformed to obtain
qualitative results in the study of the persstence and
gahility of the modd. Diffusion in a discrete space can be
represented as the product of matrices, accordingto [7].

It should be noted that the behaviour of system (10)
may not coincide with the differential equations (4). The
equivalence of differential difference equations obtained
by direct Euler transform, Euler inverse transform or
central difference schemes can only be used for
sufficiently small sampling intervals [20].

5.V,

v Vi, j.k

(n- r)}+ SV, (n)}, (10)

C. DYNAMIC LOGICAL SMULATION OF CPBSSON
RECTANGULAR LATTICE USING LATTICE
DIFFERENCE EQUATIONSWTH DELAY.

In order to simulate the dynamic logic of CPBSS,
we use the syntax proposed by A. Platser for the general
CPS[5]. The CPS uses the HP, which has more features
than difference equations. The first level of HP is a
dynamic program that is defined by the following
grammar

(n)exp{B YF(n=1) =8V, ,J(n—r)}+é{\/i,j(n)}, (11)
i,j (n+1)—
=R (mexpl-p, +m, (-1 -8, F  (n)}& @,
where @, is an evolutlonary domain constraint in the
form of a formula for the logic of the first order of real
arithmetic

@, Zym <V (n)svm™ (12)
Fm'"<FJk(n)<Fm5x/\| js k=-N,NAn>0, i+j+k=0.

The functioning of the biopixe (i, j,Kk) is
determined by two states, with respect to fluorescence.
Namely, s,, is a state of fluorescence and s, is one
of the non-fluorescence states. The use of the first order
of semantics of logic and the satisfaction ratios| = L for

the first-order formula L of real arithmetic and state s

can be determined for some pixes

(i,5,K);i,j,k=-N,N, states s, and s, &s
sﬁ|=kf.vi W (F (M= 0,, .
Snonfl Ijk(n) ljk(n)<9f'

Discrete changes occur in computer programs when
they accept new values for variables. This situation
occurs when a fluorescence phenomenon occurs in a

pixel (i,j,k); i,j,k=-N,N. The state s, , =1
assigned a value of 1 to the variable s, ;. This leads
to a discrete, jump-like change, as the value s, |, is
not changed smoothly, but rapidly when it suddenly

changes from 1 to s, ,,, causing a discrete jump of
vaues s, ;. Inthisway, we obtain a discrete model of
changes,,  ;, :=1, except for the model of change (13).

D. INVESTIGATION OF STABILITY MODEL
OF CPBSSON RECTANGULAR LATTICE. CONSTANT

STATES
In general, the sate of equilibrium
i =(.Fj) 1,i=LN, for the system (2) can be

found asasolution of an algebraic system:
Vi =Vij eXP{B—YFi,J —3\Vij J+$ i }

(14)
F,j= Fi,jeXp{—Hf MYV —5fFi,j}-

Considering (v, ;,F;}i,j=1N, we have the

i
following cases.
Stable state without antigens and antibodies:

g0 =¢20=(00),i,j=LN.
Stable state without antibodies:

£0=g0 =(£,o} i,j=LN.
Identical endemic steady sate. In the case if
Vi =V >0,i0,j=1N, (é i,j}zo),wereceivethe

stable states; | = lde”tz(\/ide”t,Fide”‘),where

Bd ¢ +ypg

_”f60+nYB_
1’]Y2+606f ,

Vident —
1’]Y2 + 606f

Fident —

ident

So, if
state.
Non-identical endemic steady state. In the generd

case, we need to solve the agebraic system (14) and find
an endemic stable state, which will be called non-identical

stationary sate Snon—ident (Vlnon ident Flnjon |dent),
i,j =l,_N In case al (Vlnon ident Fnon |dent)>0, then

gnon-ident is an endemic state. Values V9™ and F 9Nt
can be used as the initial approximations for numerical
methods for solving anonlinear algebraic system (14).

-6, +nyp >0, then ¢ is an endemic

[1I.NUMERICAL SIMULATION CYBER-PHY SICAL
BIOSENSORY SYSTEM

A. RESULTSOF NUMERICAL SMULATION
OF MATHEMATICAL MODEL OF CPBSSON
RECTANGULAR LATTICE USING LATTICE
DIFFERENCE EQUATIONSWTH DELAY.

Consider model (10) for: N =16, B=2min*

y=2—" y,=1mint, n=08/y, §, =05,

min-ug min-ug

§; =051 D=0200

min-ug min

-A=0.3nm.
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The results of numerical simulations were
implemented for different values r of time delay
(Fig. 4 (a—=<)).

c

Fig. 4. Image of phase planes of system (10) for antibody F ;.
populations relative to antigen populations V, ;, asa result of

numerical smulationat r =8 (a), r =12 (b), r =16 (c).
Designation: L —initial state, o —identical steady state,
e —non-identical steady state

As Fig. 4(a) shows, the solution converges to a
non-identical steady state, which is a stable focus.

In Fig. 4(b), the solution converges to a stable
boundary cycle with two local extremain the cycle.

Fig. 4(@ for re[0,12) shows trgectories
corresponding to a steady focus for all pixels. Hopf
bifurcation [21] occurs for values r=12 and the
following trajectories correspond to stable boundary
cycles of the élipsoida shape for al pixels.

Phase diagrams for r =12 show that the solution is
a boundary cycle with two local extrema (one local
maximum and one local minimum per cycle). Chaotic
behaviour is observed for r =16 (Fig. 4(c)), i.e. no
periodic behaviour over a large time interval. Initial
conditions were disturbed to test the sensitivity of the
system to verify that the solution is chaotic for r =16.
Comparisons of solutions for the population of

antigens V;; with the initial conditions V,,(t)=1,
Vi 3(t) =1.00Lne[-r,0] and al other identica initial

conditions, show chactic behaviour. Namely, at the
initia time, the two solutions appear to be the same, but
with the increase of time there is a difference between
the solutions, which confirms the conclusion that the
behaviour of the system ischacticat r =16.

The model of the biosensor was anayzed using a
lattice graph representing the probability of binding of
antigens to antibodies in the pixels of system (10)
(Fig. 5). It was accepted © 4 =15.

Fig. 5. Latticeimages of the probability of binding of antigens
to antibodies in pixels of sygem (10) at r =8

The study of phase diagrams and lattice images of
the binding of antigens to antibodies in the pixes of
system (10) is completdy consistent with previous
studies [9-10] regarding the stability of the array of
biopixelsin CPBSS.

B. RESULTS OF NUMERICAL SMULATION
OF MATHEMATICAL MODEL OF CPBSS
ON HEXAGONAL LATTICE USING LATTICE
DIFFERENCE EQUATIONSWTH DELAY.

Mode (2) is considered at h=0.012; B=2h;
y=2h; u,=h; 1n=001184/y; 5, =05h;

5, =05h; D/A2=222Jh; N=4.

Similar to the model based on the differential
equations [17], in a system with the discrete time when
the delay time value is changed r we observe the
qualitative changes in the behavior of biopixels and the
model under study as a whole. Numerical modeling is
performed at the values of the parameters given above.
In this case, the long-term behavior of the system (2),
which describes a hexagonal array of biopixelsat N =4
for r=5; r=17; r =22. Phase diagrams of antibody
and antigen populations for pixel and adjacent pixels at
different values are shown in Fig. 6-7.

Thus a r<16 there ae trgectories that
correspond to a stable focus for all pixels (Fig. 6 (a)). At
avalue r =17 Hopf bifurcation occurs — the following
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trajectories correspond to stable elipsoidal boundary
cyclesfor all pixels (Fig. 5 (b)). Theresults of numerical
modding are consistent with the theoretical results on
the basis of the theorem on the Hopf bifurcation [21],
which confirms the appearance of small invariant cycles

of theradius O(+vh) .

c

Fig. 6. Results of numerical modeling of the system (2) at
r=5 (a), r =17 (b), r =22 (c). Theimage of the phase
planesin coordinates (V, ;,,F, ;) for the pixd (0,0,0).

Designation: o —identical stable state, ® — non-identical
steady state

Fig. 6 (c) for r =22 shows the phase diagrams,
which are the limit cycles with two extremums (one
local maximum and one local minimum).

Lattice graphs were used for numerical modeling of
the cyber-physica mode of the biosensor. Firdtly, the
corresponding graphs were constructed, where the
probability of antigen-antibody contact was given for
each pixel, andas V,; xF ,, a r=5, r=17,r =22,

are shown in Fig. 7 (a—).

c

Fig. 7. Latticeimages of the probability
of antibody bonds with antibodiesin pixel s of the system (2)
atr=5 (), r=17 (b), r =22 (¢
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As it was shown by the numerica analysis
fluorescing states in biopixels are changed according to
the laws of discrete dynamics. Analyzing the obtained
results, it was concluded that when changing the values
of r, the behavior of pixels and CPBSS changes
qualitatively.

C. COMPARATIVE ANALYSSOF RESULTS
OF NUMERICAL MODELING OF MATHEMATICAL
MODELS OF CPBSS ON HEXAGONAL AND
RECTANGULAR LATTICESUSNG LATTICE
DIFFERENCE EQUATIONS

The results of comparative anaysis of numerical
modding of the studied mathematical modds of CPBSS
in the form of phase diagrams of populations of antigens,
antibodies (Fig. 4(a), 5(a)) and lattice images of the
binding of antigens to antibodies from biopixes of the
studied systems (Figs. 5(a)), 6(a) that for r=8
(rectangular lattice) and r =5 (hexagonad lattice) the
solutions of the respective systems (2) and (10) tend to
non-identical endemic states, which in this case are
stable focuses. A similar dependence was observed for
al biopixels of the CPBSS model on the rectangular

|attice for r [0,12) (Figs. 3(a), 4), and in the case of
using a hexagonal lattice a non-identical endemic state
was observed for r [0,17) (Figs. 6(a), 7(a)).

According to the results of the phase diagrams of
antigen populations, antibodies and lattice images, the
probability of antigen to antibody binding in CPBSS
biopixe's, we can conclude that for r =12 (in the case of
a rectangular lattice (4b)) and r =17 (in the case of
hexagonal lattice (Figs. 6(b), 7(b)) Hopf bifurcation
occurs and all subsequent tragjectories correspond to stable
boundary cycles for al pixels (Figs. 4(c), 6(c), 7(c)).

The results of numerical analysis, the probability of
binding of antigens to antibodies in the biopixels of the
studied model's, change according to the laws of discrete
dynamics. Analyzing the results, it is concluded that for
r the behavior of the biopixels and CPBSS changes
qualitatively.

IV.CONCLUSIONS

In the work a comparative analysis of CPBSS
models on rectangular and hexagonal lattices using
difference equations was performed. The general scheme
of the cyber-physical sensor system proposed in [11] was
used. Taking into account the features of biosensors the
basic model has been modified. Lattice images in
biopixels are modified according to the laws of discrete
dynamics. The devel oped models take into account the
interaction of biopixels with each other by antigen
diffusion.

The mathematical description of the CPBSS
contains discrete population dynamics, which is
combined with the dynamic logic used for discrete
events. The paper uses a class of time-lattice difference
equations that model the interaction of antigens and

antibodies in biopixels. Spatia operators modd the
interaction of diffusion type between biopixes. Dynamic
mathematicd modeling is insufficient to simulate
discrete dynamics in the systems under study. To address
this drawback, we used the dynamic logic syntax
proposed for Platzer cyber-physical systems to describe
the discrete states of a biopixel as a result of
fluorescence.

In the paper the results of numerical simulations in
the form of phase plane images and lattice images of the
probability of antigen to antibody binding in the
biopixels of cyber-physical biosensor systems for
antibody populations relative to antigen populations
were represented. The obtained experimental results
make it possible to carry out a comparative analysis of
the stability of mathematical models of cyber-physical
biosensor systems on rectangular and hexagonal |attices.
We can conclude that for r=12 (in the case of a
rectangular lattice) and r =17 (in the case of hexagonal
lattice) Hopf bifurcation occurs and all subsequent
trajectories correspond to stable boundary cycles for all
pixes.

The numerical simulation results obtained in the
paper make it possible to carry out stability anadysis and
comparisons of the studied models, taking into account
the time delay. Future research plans to study cyber-
physical biosensor systems using fast dynamic wireless
networks [22]. Also, as records are accumulated in the
systems under study, it is planned to analyze them in
order to optimize the distributed database structure,
according to [23].
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