ТЕРМОДИНАМІЧНІ ТА СТРУКТУРНІ ДОСЛІДЖЕННЯ ЗНЕВУГЛЕЦЮВАННЯ СТАЛІ 15ХМ ЗА ЧАС ТРИВАЛОЇ ЕКСПЛУАТАЦІЇ ПАРОГОНІВ ТЕС

А.І. Кондир, П.В. Гладиш, М.В. Куречко

Національний університет "Львівська політехніка", вул. С. Бандери, 12, м. Львів, Україна, 79013

Під час експлуатації в умовах повзучості у сталях одночасно і взаємопов'язано відбуваються перерозподіл дислокацій і утворення нових субзерен, ріст зерен фериту, дифузійний перерозподіл легувальних елементів, розпад перліту, зневуглецювання приповерхневих шарів металу, зародження та ріст пор [1–3]. Стосовно зневуглецювання теплостійких сталей детальні експериментальні результати практично відсутні.

Мета цієї роботи полягала у дослідженні деградації структури труб парогонів зі сталі 15ХМ унаслідок зневуглецювання після експлуатації за 510 °С і тиску насиченої пари 10 МПа тривалістю понад 280 тис. год.

Термодинамічні розрахунки зміни вільної енергії та константи рівноваги виконували з метою оцінки можливості перебігу реакцій зневуглецювання маловуглецевої сталі за порівняно низьких температур нагрівання під впливом середовищ теплоносія парогону з внутрішньої сторони та кисню атмосфери ззовні. Величини зміни вільної енергії та констант рівноваги реакцій зневуглецювання розраховували за методиками та літературними даними, наведеними в працях [4–6]. Деградацію структури сталі внаслідок тривалої експлуатації в умовах повзучості виявляли кількісними стереометричними металографічними дослідженнями лінійним та точковим методами [7] за збільшень до ×1000 на поперечних мікрошліфах після хімічного контрастування їх 4 % розчином нітратної кислоти в етиловому спирті. Мікроструктуру досліджували та документували за допомогою мікроскопа NEOPHOT-21 і відеокамери ССD 650-BH з мікронасадкою МФН-12. Рентгеноструктурні дослідження виконували на дифрактометрі ДРОН–3М.

Термодинамічні розрахунки показали, що за температури експлуатації окремі хімічні реакції зневуглецювання характеризуються великими значеннями констант рівноваги, тобто підтвердили можливість збіднення α-твердого розчину вуглецем унаслідок взаємодії з водяною парою, воднем та киснем на внутрішній та зовнішній поверхнях труб парогону.

Стереометричні металографічні дослідження кількісно довели (див. рисунок, таблицю), що на внутрішній та зовнішній поверхнях у перерізі стінки труб парогонів спостерігаються найістотніші зміни структури. Аналіз поданих в таблиці результатів показує, що розмір зерен фериту зростає, а перлітних колоній зменшується у напрямку від середини перерізу парогону до його зовнішньої та внутрішньої поверхонь відповідно у 1,1...1,3 раза для фериту і у 1,5...1,9 раза для перліту.

Зміна середнього розміру d_L зерен фериту та перліту (а) та їхньої відносної кількості $f(\delta)$ у поперечному перерізі парогону (b – відстань від поверхні з боку теплоносія): \bullet – ферит; \Box – перліт

Встановлено, що під час довготривалої експлуатації за температури 510 °C у сталі 15XM проходять такі структурно-фазові зміни: зменшення кількості перліту (розпад і зменшення розмірів перлітної складової), сфероїдизація карбідів, збільшення кількості фериту та зменшення діаметра феритних зерен, міграція їх границь, збільшення періоду гратки і півширини ліній у напрямку від серцевини до зовнішньої та внутрішньої поверхонь труб парогону, які розцінювали як ознаку зневуглецювання.

Номер групи	Ділянка парогону								
	1 мм від внутрішньої поверхні			Серцевина			1 мм від зовнішньої поверхні		
	Діаметр, мкм	Кількість зерен		Ліаметр.	Кількість зерен		Діаметр,	Кількість зерен	
		N·10 ⁻⁴ , мм ⁻³	%	МКМ	N·10 ⁻⁴ , мм ⁻³	%	МКМ	N·10 ⁻⁴ , мм ⁻³	%
Ферит									
1	0–12,5	0,15	4,5	0–10	0,80	11,8	0–12,5	0,45	9,4
2	12,5–25,0	0,45	13,4	10-20	1,10	16,2	12,5–25,0	1,6	33,5
3	25,0-37,5	0,60	17,9	20-30	1,50	22,0	25,0-37,5	0,95	19,9
4	37,5–50,0	1,02	30,4	30–40	1,90	27,9	37,5–50,0	0,81	17,0
5	50,0-62,5	0,55	16,4	40–50	0,60	8,8	50,0-62,5	0,40	8,4
6	62,5-75,0	0,36	10,7	50-60	0,50	7,4	62,5–75,0	0,35	7,3
7	75,0–87,5	0,22	6,7	60–70	0,40	5,9	75,0–87,5	0,21	4,5
8	87,5–100	-	_	70–80	-	-	87,5–100	-	-
Разом		3,35	100	—	6,80	100	—	4,77	100
Перлітні колонії									
1	0–2,5	140,4	42,1	0–3,5	9,4	14,5	0–2	40,5	17,3
2	2,5–5,0	122,9	36,9	3,5–7,0	11,5	17,7	2–4	50,4	21,5
3	5,0–7,5	31,8	9,5	7,0–10,5	18,2	28,0	4–6	54,2	23,1
4	7,5–10,0	21,6	6,5	10,5–14,0	12,6	19,4	6–8	48,8	20,8
5	10,0–12,5	9,0	2,7	14,0–17,5	7,8	12,0	8–10	21,8	9,3
6	12,5–15,0	4,5	1,4	17,5–21,0	3,6	5,6	10-12	15,3	6,5
7	15,0–17,5	3,1	0,9	21,0-24,5	1,8	2,8	12–14	3,6	1,5
8	17,5–20,0	-	-	24,5-28,0	_	-	14–16	-	-
Разом		333,3	100		64,9	100	-	234,6	100

Розподіл розміру і кількості зерен фериту та перлітних колоній у мікроструктурі сталі 15ХМ залежно від ділянки перерізу парогону

Література

- 1. Крутасова Е.И. Надёжность металла энергетического оборудования. М.: Энергоиздат, 1981. 236 с.
- 2. Мелехов Р.К., Похмурський В.І. Конструкційні матеріали енергетичного обладнання. К.: Наукова думка, 2003. 384 с.
- 3. Березина Т.Г., Бугай Н.В., Трунин И.И. Диагностирование и прогнозирование долговечности металла теплоэнергетических установок. К.: Техніка, 1991. 118 с.
- 4. Turkdogan E.T. Physical Chemistry of High Temperature Technology. New York: Academic Press, 1980. 447 p.
- 5. Могутнов Б.М., Томилин И.А., Шварцман Л.А. Термодинамика железоуглеродистых сплавов. М.: Металлургия, 1972. 328 с.
- 6. Фромм Е., Гебхардт Е. Газы и углерод в металлах. М.: Металлургия, 1980. 712 с.
- 7. Салтыков С.А. Стереометрическая металлография. М.: Металлургия, 1970. 376 с.