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DETERMINATION OF THE HORIZONTAL STRAIN RATESTENSOR
IN WESTERN UKRAINE

Doppler Orbitography and Radio-positioning Integrated by Satellite (CORS) observations from 37 Global
Navigation Satellite System (GNSS) stations located in the Western Ukraine area were processed using Bernese
Processing Engine module (BPE) of Bernese GNSS Software version 5.2 for a time span of about 2.5 years. To
get a better agreement for constrains, the IGS stations closest to the surrounding area of study were chosen with
fixed coordinates of ITRF2008 at epoch 2005.0. Eastern and Northern components of velocities of GNSS
observations from these 37 permanent stations, calculated from GNSS measurements, were used to construct a
2D model of horizonta drain rates field for the area. This study is presented in three parts. Firgly, two exact
solutions for the components of the 2D drain rate tensor derived on the geosphere based on solving the
eigenvalues — eigenvectors problem were analyzed, including skew symmetric rotational rate tensor. Secondly,
based on the most simple and useful formulas from the first sage, a rigorous estimation of the accuracy of
components of the 2D strain rate tensor were obtained based on the covariance propagation rule. Findly, the
components of the 2D strain rate tensor, dilatation rate and components of the sheer rate tensor in the region
were computed. A model of the rotation rate tensor was constructed for the described area, which led to the
conclusion that the region of study should be interpreted as a deformed territory. Based on the computations
from the GNSS-data model of components of horizontal deformations, the rates of principal values and rates of
principal axes of the Earth’s crust deformation were found. To be consistent, the main tectonic formations are
shown as the background intensity of different components of velocities, the rotation rate and strain rate tensors.
Topographic features of the region were based on the SRTM-3 model (Shuttle Radar Topography Mission) with
resolution 3"x3”. At thefirst sight, the maximum sheer rates have greatest values in the areas located around the
Ukrainian Carpathians. The dilatation rate has also a similar digribution. Nevertheless, because in the paper
only eigenvalue — eigenvector problem without accuracy estimation has been considered, which possibly leads to
doubtful conclusions regarding interpretation and requires an additional solution of a purely mathematica
problem. The full covariance matrix of the strain rate tensor should be found based on given full covariance
matrix of the velocity components obtained by Bernese software. As a matter of fact, the study region is very
complex in terms of crustal movements, which, according to the results obtained, require further densfication of
permanent GNSS stations.

Key words: Horizontal velocity; strain rate tensor; dilatation rate; maximum sheer rate tensor; accuracy
estimation; skew symmetric rotational rate tensor.

Introduction

The deformations of the Earth's crust caused by
the processes of the deep earth dynamics arose
because of the trandational-rotating motion of the
planet in space. Such deformations are classified both
in teems of their changes in time, and in the
digtribution of various spatid displacements. In
particular, they can be agerelated, periodic and
occasional, and in addition, they can be divided into
global, regional, and local deformations. Our
knowledge of the Earth's crustal movements is
strongly dependent on their natureand the period of

deformation determinations obtained from various
measurements [Minger & Jordan, 1978; DeMets, et
a. 1990; DeMets, et al., 1994; England, Molnar,
1997; Kreemer, et a., 2000, Crespi, €t al., 2000; Bird,
2003; et al.]. Traditionally, studying the deformations
of the Earth's crust involved investigating the
horizontal and vertical components of the deformation
field. In principle, the deformation analysis became a
mostly geodetic task using satellite geodesy. These
allowed the monitoring and determining with high
accuracy the three-dimensional deformation field by
means of VLBl (Very Long Basdine Interfero-
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meters), SLR (Satellite Laser Ranging), DORIS
(Doppler  Orbitography and  Radio-positioning
Integrated by Satellite), GNSS (Global Navigation
Satellite System), and InSAR (Interferometric
Synthetic Aperture Radar). Development of these
technologies cannot occur without the precise
definition and implementation of the Earth's
coordinate system to study the deformations of the
Earth's crust, as reported in the IERS Conventions
2010 by [Petit, Luzum]. Measurements from the
moderately dense network of GNSS stations were
used for this study in the Western Ukraine region.
Deformation anaysis represents a fundamental
tool for solutions of the problems of modern
geodynamics for the study of spatial and tempord
changes of deformation fields and modern movements
of the Earth’s crust. Due to tectonic processes, their
peculiarities can be explained by anayzing long-term
GNSS observations in different regions of the world.
Therefore, today such investigations contain a
common application of the experimental study of
deformations using the latest GNSS technologies, in
particular, a traditional approach in geophysics. The
determination of deformations of the Earth’s crust,
which is devoted to a very large number of scientific
works every vyear, is usuadly based on the
mathematical approach having a tensor nature. From
the outcome of such investigations [see, for example
in separate papers of, Crespi et al., 2000; Kreemer et

al., 2000; Marchenko, 2003; Vanichek, et al., 2008;
Marchenko et a., 2010] now already stated that it is
possible to calculate the 2D and 3D strain rate tensor
with 2D and 3D rigorous accuracy estimation
[Marchenko, 2003; Marchenko et al., 2010], analysis
of the deformation field components, and the
congtruction of mathematical models of active fault
zones. Such a study of deformation processes using
GNSS observations leads to the refinement of known
tectonic plates.

As will be shown below in later sections, for the
deformation anadysis of the Earth’s crugt, the
additional requirement requires the determination of
partial derivatives of the vector functions of the strain
rates. In the idea case, these functions should be
given continuoudly in the space-time domain, which,
however, is not achieved by geodetic measurements
that have discrete nature in space and time. Since
modern tectonics are generally determined from
geophysical and geodetic measurements, they also
have a discrete nature. For this reason, the initial data
also require continuous nature in space and time and
should be evaluated by means of approximation by
unknown functions based on a known discrete
distribution, which represents a problem having a
unique solution. As was noted by Juliette et al., 2006,
this problem is nothing else but preprocessing part of
the deformation analysis and can be solved by either a
finite element method or such worldwide approach as
the least square collocation.

Fig. 1. Distribution of 26 GNSS station and topographical
heights [m] according to STRM-3 model
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Fig. 2. Eastern V. component [mm/yr]
of velocity vectors in the I TRF2008 system at epoch 2005.0

Fig. 3. Northern V; component [mnVyr] of velocity vectors
in the ITRF2008 system at epoch 2005.0
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Data

Continuous observations CORS from 37 GNSS
stations were processed using Bernese Processing
Engine module (BPE) of Bernese GNSS Software
version 5.2 for the time span of about 2.5 years. To
get a better agreement for congtrains the IGS stations
closest to the surrounding area of study were chosen
with fixed coordinates of ITRF2008 at epoch 2005.0.
Fig. 1 demonstrate 26 permanent stations in the West
Ukraine area called here as Set 1. Set 2 represents 11
stations, which are surrounding the study region. As
well-known, the studied area is characterized by
complexity of tectonic and geological structures. For
better understanding, on the Fig. 1 we give
additionally the topographic features of the region
based on the SRTM-3 model (Shuttle Radar Topo-
graphy Mission) with high resolution 3"x3". Obtained
coordinates of 37 stations and 2D velocities were
applied in the following as input data to calculate the
strain rate tensor and rotational rate tensor. Figs. 2 and
3 illustrate the eastern Vg and northern Vg

components derived by BPE veocity vectors in the
time span about 2.5 years calculated with respect to
the ITRF2008 system at given epoch 2005.0 yr. The
main tectonic formations are shown as the
background intensity of different components of
eastward V¢ and northward V), velocities based on

the SRTM-3 mode!.

Strain rate and rotations rate tensors

Based on the general equations for the
determination of rotation tensor on the spherica
Earth, let’s assume that for each station vectors of the
rectangular coordinates (X;,y;,z;) and corres

ponding velocity (ij , Vyj , VZj ) are known in ITRF
system. Transformation to the local NEU geocentric
coordinates (¢;,4;, R) , having the positive
directions to North, East and Up, is well known and
can be described for the velocities (V| , V¢ , V) ) by
the following rule:

VNeu = Rq) y) 'nyZ! «y

where the rotation matrix R, ; is applied for the

transformation from the global right to the local left
coordinate system NEU with the axis direction North—
East—Up. Obvioudy that the following formulas for
(2) and (3) are hold:

—snepcosA -sinpsinA  cose
Ryoi=| -sini cosA o, @
COSpCOSA  cospsSinA  sing
. . AT
VNEU =[V|\Ju VEJ! VrJJ )
. . AT
Ve =V, W, VI €)

Now if we assume that studying strains are
infinitessimal, the corresponding tensor of second

degree can be additively decomposed into ¢; infini-

tesimal strain rate tensor and o; as the rotation rate

(vorticity) tensor.

According to Hains, Holt, (1993) the horizontal
dtrain rate field may be inverted if the rotation vector
function Q(r) is known that expresses continuous
horizontal velocity field on a sphere:

v =R[Q(F)xF], 4
where R is the Earth’s radius, r is the unite radial
vector. The equation (4) is crucia in Hains, Holt
(1993) theory and adlows draightforward
determination of the horizontal velocity field on a
sphere. Thus the components of the strain rate tensor
S, given by (Haines, Holt, 1993; Kreemer, 2000) for

the 2D space read:

. n o) V. A oQ(r)
T vt S T T

cosp OA R cosp 04

_ éaﬂ(r) +& _ éaﬂ(r) , (5)

ve op R o

1( . 0Q(F) & 0Q(r)
€y =2| N - .

2 op  Ccosp OA

where V, isthe velocity in radia direction; Q(f) is
the for the chosen patch or selected plate considered
asarigid body.

Two vectors r=(Re,A) and
ro = (R @g.4) given on the spherical Earth with the
radius R and the loca directions (A,&f) and
(Mg, &,fy) to the north, east and vertical Up, can be
expressed in the following form:

fi =[-sinpcosA, —singsinA, cose], (6)
é=[-sin4, cosi, 0], (7)
F =[cospcosi, cospsini, sing]. (8)

In the firgt approximation the linear velocity v at
the point r can be stated via the strain rate tensor
Vv(r), deteremined through Hamilton operator V
[Ward, 1998]:

V(r) = v(rg) +(r —ro)Vv(ro) , ©)

Considering hypothetically that movements take
placein the tangent planeto the Earth’s sphereis true,
then from the known relationship between the linear
and angular velocity one gets

v=Q(r)xr. (10)

Moreover, taking into account (10), equation (9)
can be transformed as follows:

V=Q(r) xro+(r —ro) - [VQ(r)xre] . (11)

The first term of the equation (11) represents
rotation around the pole Q(ry), and the tensor

[VQ(ry)xry] can be additively decomposed into the
strain rate tensor S, (r,) and rotation rate tensor
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Ry (rg). If Q(r)=const, then VQ(ry)=0 and
tensors S, (ry) and R,(ry) cannot be determined.
For the transformation from the 3D space to the 2D
space as surface of the sphere, it issufficient for Q(r)
to consider dependence from two polar coordinates
only
Q(r) =Q(e,4) (12)
Then the horizonta strain rate tensor and accuracy
of it congtituents can be estimated by neglecting the
velocity V, inradial directionin (Eq. 5) and using the
known esstern Vg and northen V velocities
derived from GPS observations. This assumes the

. AT
vector [V,&, VE‘J of a horizontal velocity or residual

velocity at the j number of geodetic point in the north
V) and the east V{ directions in the NEU local

coordinate system (as example, after removing of the
NUVEL-1A modd). In such a case unknown
parameters could be considered as infinitesimal
values and should be determined by elements of the
symmetric strain rate tensor S, :

My 1 (avN L OVe J
o 2 0L 0o
s, = =
Uy Ve) M
2\ oL Og oA
. . 13
{gw ‘C’Wl} 13

éq)/l %1
and skew symmelric tensor R, or rotation rate
(vorticity) tensor:

R [T

A
Ry = .

LoV _ave 0
2 0L 0o

10 1
=0 .
-1 0
where @ istherotation rate of the region, assumed as
a rigid body. Obvioudy the rotation rate is adopted
here as a function of spherical coordinates. The grain
rate tensor S, and the rotation rate tensor R, are

then given by the formulas (13) and (14), if the
velocity vector v =[Vy,Vg ]T consists of the northern

(14)

Vy andtheeastern V¢ components.

Thus, it becomes necessary to determine the
fundamental function Q(F) in the considered

approach. Generally all geodetic and geological data
require some preliminary analysis and prediction to
the nodes of selected usually uniform grid to deter-
mine the derivatives presented in equation (5)—(14).
In addition, the dastic properties of a tectonic plate
can be modeled through spatial derivatives of a

function Q(f), which are equal to zeroin (5) for such
areas, which are located on the same plate and with
the same function Q(f) dependent from the Euler
pole. Generally speaking, in the frame of considered
theory, any area for which, Q(f)=const can be
interpreted asarigid plate or region.

Solution of eigenvalues— eigenvectors problem

To analyze the solution for the eigenvalues and
eigenvectors of the symmetric tensor S,,, given by

the expression (13), we recall that there are two
different approaches. In order to select an optima
version for formulas and further accuracy estimation
we will consider these two different solutions.
According to the well known first solution given for
gtrain tensor (see, for example, Vanicek, et d., 2008)
the invariants of the matrix (13) can be calculated as
follows:

|y =Trace(S,) =&,y +&,, =27,  (15)

|, =Det(Sy) =&t —£2 (16)
and used to solve the characteristic equation
A?—1,A+1,=0. (17)

The solution of the equation (17) leads to the
invariants 1; and |, of the matrix (13). Two

eigenvalues A; andA, are obtained as a solution of
this quadratic equation:

_hi+v

M=o 2= j4vl2, dy= v

=y -v/2,(18)

where we suppose that 4, > 4, and v =4, — 4, isthe
roots difference of the equation (17) or the so-called
rate of maximum shear, which is determined based on
invariants (15) and (16) and the corresponding
elements of the strain rate tensor (by substituting for
4, and 4, inequation for v = 4, — 4,) we get:

V=124, = (6 612 +4EZ . (19)

It is evident that two principal axes represent such
directions of strain rate tensor that characterize the
maximum and minimum axes corresponding to the
expansion A; and compression A, of some chosen

certain area of study and can be found based on
known values A; and A,. Usually an eigenvector

problem is solved in digital form.

Nevertheless we shall discuss another approach.
Henceforth the eigenvaues (18), which correspond to
certain vectors, can be obtained together with
directions of the eigenvectorsin a closed form that is
necessary for further accuracy estimation of al
components of the eigenvalue-eigenvector problem.
For this, we first recall that the principal axes of our
tensor (13) coincide with the principal directions of
the so-called tensor-deviator, which is defined not
only by symmetric properties of the strain rate tensor
(13), but also by a zero trace Trace(S,). For




Geodynamics 2(27)/2019

instance, among other types of tensors-deviators that
have already been studied in terms of the derivation of
andytic solutions of the eigenvalues — eigenvectors
problem are the Earth's inertia tensor and well-known
from GOCE satellite mission gravitational gradient
tensor [Moritz, & Muller, 1987; Marchenko, &
Schwintzer, 2003; Marchenko, 2003; Marchenko, et
a., 2016]. Coming to the corresponding transfor-
mation through Trace(S,) of the tensor (13) to the

deviator D,, itiseasily seen:

s, ZDV+Trac§(S\,),
D, =5, - s, i ()

Equations (20) provide the desired matrix —
deviator Dy, :
E,p — € 26
D, = 4| fo0 TE Fer | (1)
2 25(0,l €30 ~€gp
The solution of eigenvalues — eigenvectors

problem for the deviator (21) is straightforward, since
the invariants have the simplest form

iy =Trace(D,,) =0,

i = Det(Dy) = (g ~£12)° 14460, |, (22)
that allows solving the corresponding quadratic
equation and finding both roots and its restoring to the
original equation (17):

22 +i,=0,

2

AZ}: £ gy —£1)2 14468 =012, (23)

Al . AL ful2
AZ}‘”{AZ}"”{—U/Z @9

After some agebraic manipulations formulas
(20)—(24) provide the important practical aspect. The
tensor S, can bewritten now in the following way

Lx-v1 7
> 2{ Y2 9&+VJ’ 29
where
X =(Epp T€11)12,
V1= —€pp s Y2=28,, (26)
In the equation (26) y isthedilation rate or the rate of
average expangon (compression) of the region surface
y, and y, represent the rate of components of the total
rate y inagudying area. It is obvious that the rate that
thisrate y can be derived from y, and y,:

7 =i +73 - (27)
Thus, in the relationships (5), (13) and (25), the
last representation of the tensor S, becomes

especially important, since it enables one to obtain a
solution of the characteristic equation (17) for the
tensor (25) in the most appropriate form

10

A1=(9'5.+;?.)/2} . (29)
Ay=(x—7)12

According to Vanicek et al., (2008), for the study
of deformation field, the so-called maximum
displacement v=A;-A, is used as an invariant
characterigtic in the form (19). It is easily seen from
(28) and v =y, these concepts are agebraically

identical in the case of strain tensor and strain rate
tensor considered herein the 2D space. In our case the
parameter v =y is nothing else but the rate of

maximum shear.

Now comes important step for the determination
of the eigenvectors (also called by principal vectors)
in view of the fact that the eigenvalues A, and A, of

the tensors (13) or (25) correspond to their principal
vectors A; andA, respectively. Remembering the

definition of A; and A, these vectors can be found

as anontrivia solution of the homogeneous (singular)
system of algebraic equations
(Sy ~Aj1)-A; =0, (29)

where | isthe (2x2) unit matrix. Consider the matrix
of the system (29) in the vector form

Sy -Ajl=[s-Al, s,-Ae ], (30)
where each auxiliary vector s; represents the i-th
column of the matrix S, :

1 x—-n 1 7,
_1 Cs,=x T2 | @
3 2{ s } %2 2L+yj 3D

Here e and e, arethe unit vectorsin the adopted

horizontal local coordinate system.
Thus, the system of linear equations (29) provides
the following two conditions of orthogonality

(s-Aje, A)=0, (=12,
(j=const). (32
Therefore, each eigenvector A; will be normal to
a plang, in which al-auxiliary vectors s —A;e
belongs to each fixed j=const. The transformation
of the matrix S, —A;l into the system of principal

axes (A, A,) leadsto the relationship
(Al—Aj 0 J
S -Ajl= ,
0 A,-A,

rank(S, — A1) =1 where A; > A,, (33)

for each (j = 1, 2). The result (33) reflects the
following fact: there is only one linearly independent
vector in the set 5 —A;g for each fixed (j = 1, 2).

Thus, we can obtain an eigenvector A; as a vector

product of the corresponding linearly independent
vectors s —A;€ . Simplest general solution can be

formed by analogy with a three-dimensional case
[Marchenko, 2003] by calculating the following
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vector product, which coincide with the eigenvectors
but are unnormalized,

Zi=(s-Aje)x(s,-Aj&y) - (34)

After standard normalization of each vector Z;
one gets

A =Z;1/(Z;Z;) . (35)

As a result, transformation (34) alows us to

represent every non-unique eigenvector in the
simplest form

Z,=P+A;s+A%e, (36)
where

P=sxs,, s=5+s,, e=g+e,=[1 1]T. (37)
Thus, the resulting equations (35)—(37) give a
rigorous solution of the problem. However, for a
strain rate tensor, which is studied in the 2D case,
there are significantly simpler dependencies that
allow further accuracy estimation of eigenvalues and
principal axes using known velocities fidd and its
covariance matrix from GPS-data processing. Note
that the eigenvalues A; and A, of the tensors (13) or
(25) assumed as principal values of strain rate tensor
that correspond to the principal vectors of the
maximum A; (minimumA,) extension (compres-
sion) in these principal directions.
In this case, these vectors, considered as axial,
correspond to principal directions. Simplest formulas
represents the azimuth o, of the first principal axis

A,, calculated by the formula (38), and the azimuth
o, of the second principal axis A,, which is

determined from the condition that the principa axes
are perpendicular to each other:

a1=1arctan[QJ, a,=oy+ml2. (39
2 71

The azimuth B =0, +7/4 corresponds also to
axial vector in the direction of the maximum shear
and equivalent to the bisector of the angle between the
principal axes A; and minimal A,. Equation (38)
together with the solution (25)—(28) of the egen-
values problem alows us to proceed to a rigorous
estimation of the accuracy of the parameters from
given GPS observation.

Error propagation for the eigenvalues —
€eigenvectors problem

According to [Marchenko, 2003; Marchenko, et
al., 2010], the formulas for the accuracy estimation of
the eigenvalues and eigenvectors can be obtained via
error propagation if the input data represented in
following form

T =[ew’ 78 ewfl]T’ (39)

together with the known covariance matrix C;; of
the components (39) of the strain rate tensor. Taking

into account that adopted functional dependence for
the calculation of eigenvalues is the relationships
(28), which are based on the vector
L. . 9T
t=[1 71 72] =
T
=[(6p+€2)/2 €, -6, 26, ] ., (40)
we come to the additional task of preiminary
accuracy estimation of the components of the vector
t. Therefore, using the covariance propagation rule
the matrix (41) of the following partial derivativesis
necessary

12 U2 0
A _lq 1 ol (41)
aT

0 0 2

When (41) is given, the full covariance matrix C,

of the vector t can be found by means of error
propagation rule

T
ot ot

Cy=—0Cr| =1 . 42

e w

For further accuracy estimation of the eigenvalues

h=[An A,]" (43)

we recall that each eigenvalue can be represented as a
dependence on two parameters only: the dilation rate
% and two components y; and y, allowing to obtain
the rate of the maximum shear y = (y2 +72)Y? (27).
It should be noted that accuracy of the dilatation rate
% and accuracy of the components y, and y, (21)
are derived from (42) and the variance var(y) of the
parameter y can be found in the following way

. T . . T
., 0 0 oy ot oy ot
Var(?’)=—yctt(_yJ -1 —c ( 4 J '

ot at) ater loteT
5—7{0, n V—?] (44)
ot Yy 7

Differentiating (43), according to usua rules, we
get the matrix of partid derivatives from the
eigenvalues vector A with respect to the components
of the vector t (42) and the complete covariance

matrix C,, :

1 n rn
a_|2 7 %
a |1 o T
2 2y 2
an . (o an et an ot
C,=—C,| = =Z=—C| === . 45
Mot “(atJ ot oT TT(ataTJ (45)

Accuracy estimation of the directions of the
principal axes reduces in the evaluation of the
accuracy of azimuths (38), which correspond to the
maximum A, and minimum A, directions. Applying
the covariance propagation rule to the first of the
relations (38), variance of azimuth of the first
principal direction can be obtained

11



Geodynamics 2(27)/2019

%:{o
ot

T
oo oo
var(a,) = #Cn (—1J =

N Y2
2y 2|

ot
00 0t (%ﬂj_
at oT T at oT
Variance of the azimuth «, of the second principal
axis and the azimuth S of the direction of maximum

shear will be equivalent, snce partia derivatives of
these three parameters coincide.

(46)

Estimation of the strain rate tensor
in the West Ukraine area

The initial eastern V¢ (Fig. 2) and northern V

(Fig. 3) linear velocity were found from the 37 GNSS
stations located in the study area using Bernese
Processing Engine module (BPE) of Bernese GNSS
Software version 5.2 for the time span about 2.5
years. To get a better accordance for constrains the
IGS stations closest to a vicinity of study location was
included with additiona fixed coordinates of
ITRF2008 at epoch 2005.0. Therefore, these
velocities Ve and V, aso related to the ITRF2008

system (epoch 2005.0) as source information. See
Figs. 2and 3.

The components ¢, ,, €,, , &,, Of the strain
rate tensor were computed straightforward through
numerical differentiation using unites [ustrain/yr=
=10%year]. Then formulas (24)—(27) dlow to
caculate the dilation rate y and the rate components

¥, , ¥V, of the tensor — deviator. Obviously the

eigenvalues and eigenvectors can be derived from
formulas (28) and (38) respectively. Figure 6
illugtrates the eigenvectors obtained from (38) in the
points of GNSS dations location. Then the

components &,,, & , & , of grain rate tensor
A A o oA

and the component @ of rotational rate tensor have
been calculated based on formulas (13) and (14)

respectively. We omit here the parameters €, , €, ,

£,, and givethe vaue o illusrated by Fig. 4. After
determining the components ¢, , , €, , €,, of the
drain rate tensor, formulas (24)—(27) alow easy
calculation of the maximum A, and minimum A,
eigenvalues given in the local NEU system (ITRF2008
frame), the dilation rate y , the rate components v,

y, of thetensor —deviator and directions of the rate of
theprincipal deformations A; and A, asegenvectors.

It is evident that the maximum and minimum
eigenvalues should be derived from formula (28).

Fig. 4. Basic component of rotation rate tensor ¢ [10 %/year]
(rotation rates of the region)

12
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Fig. 5. Dilatation rate [ustrain/yr] based on principal deformations
corresponding the expansion A, and compression A,

Fig. 6. Maximal shear rate [ustrain/year]; directions
of the principal deformations («>) A,

(expansion) and (—<«—) A, (compression)

13
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Fig. 5 demondrates the dilation rate y . Maximum
sheer rate vector y with directions of the same
principal axesis presented in fig. 6, which correspond
to the maximum A; and minimum A, egenvectors

or principal deformation rate in the region. To be
consistent, the main tectonic formations are shown on
al Fig. 2-6 as the background intensity of different
components of the velocity components, rotation rate
and strain rate tensors. Topographic features of the
region were based on the SRTM-3 model (Shuttle
Radar Topography Mission) with resolution 3"x3".

Summary and Conclusion

In summary we can conclude.

1. GNSS observations from the 37 stations
located in the Western Ukraine area were processed
using Bernese GNSS Software version 5.2 for the
time span about 2.5 years. Therefore, coordinates and
velocities of 37 GNSS gtations have been calcul ated.
Those results were used to construct the 2D model of
horizontal strain rates in the region of Western
Ukraine, including a pat of the Carpathian
Mountains.

2. Then after dendfication a digital mode of
linear horizontal velocities of the Earth's crust
movements for the Western Ukraine area was
calculated. Two well-known methods for analytical
solution of the eigenvalues — eigenvector problem for
the 2D drain rate tensor are andyzed, and their
identity is shown. Simplest formulas were chosen for
further use in calculations and rigorous accuracy
estimation.

3. For better understanding, the basic tectonic
formations are shown as the background intensity of
different components of velocity, the rotation rate,
and strain rate tensors. Topographic features of the
region were based on the SRTM-3 model (Shuttle
Radar Topography Mission) with high resolution
3"x3" (Fig. 1). A model of therotation rate tensor was
congtructed for the region of Western Ukraine, which
leads to the following conclusions. According to the
classical approach, it is assumed that each tectonic
plate should be rigid (having the same linear
velocities for each sub-region lying on the same
plate), then any area for which the condition @ =0 is
fulfilled (linear velocity = const), considered as a non-
deformed region. This condition @ = 0 isnot fulfilled
for the Western Ukraine area.

4. Based on the computations from GPS-data
model of components of horizontal deformations, the
rates of principa values and rates of prin

5. cipal axes of the Earth’s crust deformation
were found. At the firg sight, it should be pointed out
that the maximum sheer rates have greatest values in
the areas located around the Ukrainian Carpathians.
The dilatation rate has also a similar distribution.

6. However, this paper deals only with the
problem of eigenvalues — eigenvectors without
estimation of accuracy, which may lead to doubtful
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conclusions about interpretation and require
additional solution of a purely mathematica problem.
The complete covariance matrix C;; of the strain

rate tensor must be found from the given covariance
matrix of the velocity components obtained by Berne
software. This problem was omitted in the article due
to possible further devel opment.
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OLIIHIOBAHHS TEH30PA IIBUIKOCTEM TOPU3OHTAJIbHUX JIEPOPMALIIA
V PETTOHI 3AXIJHOT YKPATHI

Hani GNSS crioctepexens (CORS) 3 37 craHiiiif, po3TaiioBanux y paioni 3axianoi Ykpainu, 06po6ienO 3a
normoMororo Moy Bernese Processing Engine (BPE) Beprcbkoro nporpamuoro 3a6esmnedenss GNSS Bepcii
5.2 mpotsarom nepioay yacy 6imspko 2,5 poky. 1106 mocsartu kpamioi 3roau, BubpaHo cranmii |GS, Haiommkyi
JI0 HABKOJIMIITHBOT O paiioHy AOCiimKeHHs, 3 (pikcoBanuMu koopauHatamu | TRF2008 B enoxy 2005.0. Cxigna Ta
MiBHIYHA CKJIAJIOBI MBUAKOCTI criocTepekeHb GNSS 3 1ux 37 mocTiffHUX CTaHIlii, 0OYUCIICH] 3a pe3yabTaTaMu
BumiptoBanb GNSS, BukopucTaHi Ui TOOy10BU TBOBUMIPHOI MOJEINI TOJISi TOPU3OHTANBHUX Jedopmaniii miel
MicreBocTi. e mocmipkeH s CKIIaaaeThesl 3 TphOX YacTuH. [lo-nepiie, mpoaHani3oBaHO JBa TOYHI PillIEHHS IS
koMIToHeHTiB 2D TeH3opa mBuIkocTel nedopmariid, oTpuMaHi Ha reocdepl Ha OCHOBI PO3B’SI3aHHS BJIACHUX
BEJIMYUH — 33J[a4l BJaCHUX BEKTOPIiB, YpaXxOBYIOUM CHMETPUYHHI TEH30p IIBUAKOCTI oOepraHHs. [lo-mpyre, Ha
OCHOBI HaWMpPOCTINIMX I HAWKOPHUCHIIIMX (POPMYI 3 IEPUIOrO €Tarny BUKOHAHO CTPOTe OL[IHIOBAHHS TOYHOCTI
komItoHeHTiB 2D TeH3opa mBHakocTell nedopmaliiii Ha OCHOBI NpaBWIia IMOMIMPEHHs KoBapiatii. Hapernri,
obuucneno komroHeHTd 2D TeH3opa mBHAKOCTI Aedopmallii, MBHAKOCTI JUiIaTamii Ta KOMIOHEHTH TEH30pa
PIBHUX IMIBUAKOCTEH B obyacti. [ onmcaHoi obacti moOyaoBaHO MOJENb TeH30pa MIBUAKOCTI o0epTanus. Lle
TIPUBEJIO 10 BUCHOBKY, L0 00JIACTh JIOCIIDKEHHS CIIiJ| iIHTepIpeTyBaTH K nedopMoBaHy Tepuropito. Ha ocHOBI
obuucnens 3 GNSS-Moneni 1MX KOMIIOHEHTIB TOPU3OHTAJIBHUX AedopMallii BCTAHOBJIEHO HOPMU OCHOBHHX
3Ha4YeHb Ta IIBHIKOCTI OCHOBHUX ocell aedopmarii 3eMHOi kKopu. OCHOBHI TEKTOHIUHI YyTBOPEHHSI MOKA3aHO SIK
()OHOBY IHTEHCHBHICTh PI3HMX KOMIIOHEHTIB IIBHIKOCTEH, MIBHIKICTh OOEpTaHHS Ta TEH30pW MIBUAKOCTI
nedopmariii. Tomorpadiuni ocobnuBoOCTI periony rpyHryBamuch Ha Mmoxeni SRTM-3 (micis 3 Tomorpadii
Shuttle) 3 posmineHoro 3matHicTio 3'x3". Ha mepuiuii morisy, HalOLIbII 3HAYEHHS OTPUMAHO B paloHaXx,
po3TamoBaHuX HaBKoJO Ykpaincekux Kapmar. IlIBuakicts nunaranii Takox Mae mofiOHuii posmonin. Tum He
MEHIIIe, OCKUIBKH B POOOTI OOYMCIICHO JIMIIE BJIACHI YHCIIA Ta BJAaCHI BEKTOpU O€3 OIIHKHM TOYHOCTI, LIe MOXeE
MIPU3BECTH JI0 CYMHIBHUX BUCHOBKIB IIOJIO iHTEpIIpeTalii pe3y/bTaTiB i BUMarae J0JaTKOBOTrO PO3B’ sI3aHHS CYTO
MaTeMatn4Hoi 3amgaui. [loTpiOHO 3HalTH KOBapialliiiHy MaTpuIfo TeH3opa nedopmaiii Ha OCHOBI 3aJaHOI
KOBapiauiiHOI MaTpuIli KOMIIOHEHTIB IIBUIKOCTI, OJiep)KaHUX IIporpaMHuUM 3abe3neueHHsM Bernese. Ockinbku
JIOCITI/PKYBaHUH PETioH € Ay)Ke CKIJIaJHHUM, TO 32 OTPUMAaHUMHU Pe3yJbTaTaMH HeOOXiJHE MOAaJIbIIe YIIIEHEHHS
nepManeHTHHX cTaHIiin GNSS.

Kniouosi cnosa: TeH30p IIBUAKOCTEH TOPU3OHTAIBHMX AedopMaliid; MBHIAKICT IWIATalii; TEH30p
LIBHAKOCTEH MaKCHMaJIbHOTO 3CYBY; OIIIHIOBAaHHSI TOUHOCTI.

Received 18.07.2019

15



