ПРО МЕХАНІЗМ ОКИСЛЕННЯ НАСИЧЕНИХ ВУГЛЕВОДНІВ В КОНЦЕНТРОВАНІЙ СІРЧАНІЙ КИСЛОТІ

<u>¹Лариса Волкова, ²Йосип Опейда</u>

¹Інститут фізико-органічної хімії і вуглехімії ім. Л.М. Литвиненка НАН України, Харківське шосе, 50, м. Київ, 02160, Україна, volkovlk@gmail.com ²Відділення фізико-хімії горючих копалин Інституту фізико-органічної хімії і вуглехімії ім. Л.М. Литвиненка НАН України, м. Львів, Україна

В нафтохімічних процесах реакції окислення, ізомеризації, алкілування насичених вуглеводнів (RH) займають важливе місто. Поряд з пошуком нових каталізаторів [1], дослідження механізму цих реакцій, в тому числі й у відомих системах [2-7], є актуальним.

Отримані в даній роботі кінетичні результати з окислення RH в розчинах 94 %-ної сірчаної кислоти зіставлені з літературними з ізомеризації 2-метилпентану в 94 % H₂SO₄ як в гомогенних [5-6], так і гетерогенних [7] умовах і розглянуто механізми цих перетворень. В сірчаній кислоті ізомеризуються насичені вуглеводні з третинним атомом вуглецю; алкани нормальної будови й з четвертинним атомом вуглецю не ізомеризуються.

В [5-6] показано, що в розчинах 93,6 мас. % H_2SO_4 при 20 – 70 °C 2-метилпентан (2-МП) ізомеризується в 3-метилпентан (3-МП), 2,3-диметилбутан (2,3-ДМБ) і фрагментує до 2-метилпропану (*i*-C₄H₁₀, ізобутан) і 2-метилбутану (*i*-C₅H₁₂, ізопентан). Серед продуктів алканів C₁– C₃, *н*-алканів ряду C₄– C₈ й ізооктанів не виявлено.

Ці результати розглянуто авторами [6] в рамках карбокатіонного ланцюгового механізму, згідно з яким ізомеризація 2-МП починається зі стадії ініціювання – утворення й накопичення 2-метиламільних карбокатіонів за рахунок окислення 2-МП сірчаною кислотою. Позначення і-С_nH_{2n+2} відповідає кожному з ізомерів з трет. зв'язком С–Н. При 20 – 50 °С індукційний період (ПП) досягає кількох годин. Прискорити накопичення карбокатіонів і таким чином зменшити ІП, або повністю зняти, можливо: 1) добавками, які в сірчаній кислоті або самі швидко перетворюються в катіони, що спроможні переносити гідрид йон Н- від 2-МП, наприклад антрацену, ізобутілену, пропілену, або значно швидше за саму H₂SO₄ окислюють 2-МП до катіонів, наприклад слідових кількостей сильних окисників хрома(VI), марганця(VII), кобальта(III); а також 2) підвищенням температури до 60–70 °С і в повторній реакції в тому ж розчині [5]. Наступна стадія – безпосередньо ізомеризація, скелетне перегрупування завдяки здатності трет. катіонів до переміщення карбокатіонного центра та метидної групи по ланцюгу вуглецевих атомів. На стадії продовження ланцюга в результаті взаємодії кожного з катіонів t-С₆H⁺₁₃ з 2-МП, або іншим джерелом Н⁻, утворюються продукти ізомеризації і регенеруються носії ланцюга. Фрагментація до *i*-C₄H₁₀ та *i*-C₅H₁₂ – наслідок розпаду самих *t*-C₆H⁺₁₃, або їх димерних продуктів взаємодії з відповідними олефінами.

Вплив на ізомеризацію початкової концентрації 2-метилпентану, [2-МП]₀, і добавок ізопентану, додаткового до самого 2-МП донора H⁻, вивчено при 25 °C і добавках антрацену $[R_AH] = (1,3 - 2,0) \cdot 10^{-3}$ моль·л⁻¹ [6]. При низьких [2-МП]₀= $4 \cdot 10^{-4}$ моль·л⁻¹ вихід суми ізомерів (3-МП + 2,3-ДМБ) не перевищує 50 % на 2-метилпентан, що прореагував; *i*-C₄H₁₀, *i*-C₅H₁₂ не накопичуються. При високих [2-МП]₀ = $(8 - 50) \cdot 10^{-4}$ моль·л⁻¹ та низьких [2-МП]₀ = $2 \cdot 10^{-4}$ моль·л⁻¹, але в присутності великих добавок ізопентану, [*i*-C₅H₁₂]₀ ~ $5 \cdot 10^{-3}$ моль·л⁻¹ на початку процесу досягається майже 100 %-ний вихід ізомерів. Після максимума концентрації рівноважних ізогексанів знижуються, що пов'язують з накопиченням спочатку ізобутану і далі ізопентану. При високій [R_AH] = 0,34 моль·л⁻¹ 2-метилпентан швидко окислюється, при цьому з'являються лише сліди 3-МП, 2,3-ДМБ, *i*-C₄H₁₀, *i*-C₅H₁₂.

Ukraine, Lviv, May 14-18, 2018

В даній роботі кінетика конкурентних, одночасне окислення 2-х або більше RH, реакцій в розчинах 93,9 мас. % H₂SO₄ при 80 °C вивчена, як і в [5-6], кінетичним розподільчим методом, запропонованим Є.С. Рудаковим [2]:

 $-(d[RH]_G / d\tau) = k_{\lambda} [RH]_G[H_2SO_4] = k_{\lambda} [RH]_G, k_1 = k_{\lambda} \cdot (1 + \alpha \cdot \lambda), \alpha = [RH]_G / [RH]_L,$ (1) де $k_{\lambda} = k_{\lambda} [H_2SO_4]$ і k_1 – спостережувана та рідиннофазна константи швидкості псевдопершого ([H₂SO₄] >> [RH]_L) порядка; α – коефіцієнт рівноважного розподілу RH між газовою фазою (G) і розчином (L); $\lambda = V_G/V_L$ – відношення об'ємів двох фаз у закритому реакторі, який термостатується й інтенсивно струшується та вміщує внутрішній стандарт метан. Значення k_{λ} знаходили з витрати [RH] (концентрації в газовій фазі), за якою спостерігали ГРХ-методом, в інтегральній формі: ln[RH] = – $k_{\lambda} \cdot \tau$ + const.

В таблиці 1 наведено константи k_{λ} і k_1 для реакцій в сірчаній кислоті при двох різних початкових концентраціях [RH]₀. В досліді №1 при концентрації кожного із субстратів [RH]₀ $\leq 0,1\cdot10^{-4}$ моль·л⁻¹ окислення ізопентана, метилциклопентана, 3-метилгептана сірчаною кислотою проходить без індукційного періода та відповідає кінетиці 1-го порядку по [RH]. В газовій фазі реактора продукти не зафіксовані.

Таблиця 1

Спостережувані (k_1) і рідиннофазні (k_1) константи швидкості реакцій RH в розчинах 93,9 мас. %-ної сірчаної кислоти при 80 °С

№ досліду	1, окислення RH без IП			2**, Ш от 1 до 2 год			
RH^{*}	$i-C_5H_{12}$	МеЦП	$3\text{-Me-}C_7H_{15}$	$i-C_5H_{12}$	2,3-ДМБ***	$2-\text{Me-C}_6\text{H}_{13}$	$3\text{-}Me\text{-}C_7H_{15}$
$k_{\lambda} \cdot 10^4$, в с $^{-1}$	0,27	3,0	1,0	$\leq 0,1$	0,80	0,53	0,52
$k_1 \cdot 10^3$, в с ⁻¹	0,75	2,7	2,5	\leq 0,3	2,2	1,3	1,3

^{*}*i*-C₄H₁₀ – 2-метилпропан (30), *i*-C₅H₁₂ – 2-метилбутан (26), 2,3-ДМБ – 2,3-диметилбутан (25), 2-Me-C₆H₁₃ – 2-метилгексан (22), 3-Me-C₇H₁₅ – 3-метилгептан (23), МеЦП – метилциклопентан (7,7). В дужках наведено використані величини α в 94 % H₂SO₄.**Приведені константи для швидкої ділянки після індукційного періоду. ***Початкова концентрація 2,3-ДМБ (~ 1·10⁻⁴ моль·л⁻¹) в 7 – 8 разів більша порівняно з [RH]₀ для кожного із решти субстратів в двох дослідах.

В досліді №2 в реактор з розчином 93,9 % H_2SO_4 вводили суміш парів ізопентана, 2-метилгексана, 3-метилгептана, через 25 хв – пари 2,3-диметилбутана, [2,3-ДМБ]0 в 7 – 8 разів більша порівняно з [RH]0 ~ 0,1·10–4 моль·л–1 для кожного з 3-х інших субстратів. Через півгодини після введення 2,3-ДМБ в пробі з газової фази з'являється пік, час утримування (тутр) якого співпадає з тутр для аутентичного ізобутану. Для ізопентана, 2,3диметилбутана, 2-метилгексана и менш чітко для 3-метилгептану залежності в координатах 1-го порядку по [RH], (ln[RH] – τ), передаються двома прямими. Далі для першої прямолінійної ділянці, назвемо її індукційний період, наведено оцінки тривалості та констант швидкості реакцій:

RH (IП, В ГОД)	<i>I</i> -C ₅ H ₁₂ (~ 2)	2,3-ДМБ (~1,5)	2-ME-C ₆ H ₁₃ (~2)	3-ME-C ₇ H ₁₅ (~1)
$K_{\lambda} \cdot 10^4 (K_1 \cdot 10^3)$, B C ⁻¹	$< 10^{-2} (< 0,1)$	0,25 (0,7)	0,22 (0,6)	0,20 (0,5)

Протягом індукційного періода витрата i-C₅H₁₂ практично відсутня, $k_1 < 0,1 \cdot 10^{-3} \text{ c}^{-1}$, тоді як 2,3-диметилбутан, 2-метилгексан і 3-метилгептан витрачаються приблизно з однаковою швидкістю, $k_1 = (0,6\pm0,1)\cdot 10^{-3} \text{ c}^{-1}$. Константи k_{λ} і k_1 , отримані для другої прямолінійної ділянки швидкої витрати RH після III, наведені в таблиці 1. Ці константи більші порівняно з відповідними на першій ділянці для i-C₅H₁₂ і 2,3-ДМБ не менш ніж у 3 рази, для 2-метилгексану і 3-метилгептану не менш ніж у 2 рази; і менші порівняно з відповідними k_1 в досліді №1 для i-C₅H₁₂ в 2,5 рази, для 3-Ме-C₇H₁₅ в 2 рази.

Кинетичні результати на всьому протязі досліду №2 для 5-х RH були оброблені також в координатах нульового порядку по [RH], ([RH] – τ). Нижче зіставлені коефіцієнти цієї кореляції (R²), перше число в колонці, з коефіцієнтами R² обробки по 1-му порядку на другій ділянці після III, друге в дужках число в колонці:

RH	$I-C_4H_{10}$ $I-C_5H_{12}$		2,3-ДМБ	$2-ME-C_{6}H_{13}$	$3-ME-C_7H_{15}$
\mathbf{R}^2	0,996; (0,960)	0,653; (0,656)	0,937; (0,936)	0,950; (0,920)	0,944; (0,926)

Кінетика накопичення продукту ізобутану перші 3,5 год відповідає строго нульовому порядку, далі швидкість зменшується. В максимумі концентрація i-C₄H₁₀ на порядок нижча, ніж [2,3-ДМБ]₀ і порівнянна з [RH]₀ для інших субстратів. Коефіцієнти R² двох обробок для 4-х субстратів близькі, однак дещо кращі для нульового порядку.

Розглянемо дані таблиці 1 в рамках карболанцюгового механізму. Як в [6], введемо позначення: R_iH – ізогексани з індексом і = 2 (2-метилпентан); 3 (3-метилпентан); 2,3 (2,3-диметилбутан); R_jH – інші субстрати *i*-C₅H₁₂, 2-Me-C₆H₁₃, 3-Me-C₇H₁₅, MeUII; R_kH – продукти фрагментації; відповідно до R_iH , R_jH і R_kH – третинні карбокатіони R_i^+ , R_j^+ , R_k^+ ; $C_{12}H_{25}^+$ – димерний катіон, $C_{12}H_{25}'$ – ізомер димерного катіону; Ol – олефін, All⁺ – алільний катіон.

Зіставлено умови реакцій в сірчаній кислоті індивідуальної для 2-МП в присутності антрацену по даним [6] (колонка 1) і конкурентних RH в дослідах №1 і №2 (колонка 2):

[H ₂ SO ₄], мас. %		добавки		T, °C		[RH] ₀ ·10 ⁴ , моль·л ⁻¹		
93,6	93,9	антрацен	-	25	80	4 - 50	\leq 0,1 – 1,0	

Відомо [2], що окислення RH сірчаною кислотою відповідає схемі:

$$\mathbf{RH} + 2\mathbf{H}_2\mathbf{SO}_4 \longrightarrow \mathbf{R} + \mathbf{HSO}_4^- + \mathbf{SO}_2 + 2\mathbf{H}_2\mathbf{O}.$$

Далі в залежності від початкової концентрації перетворення йдуть різними маршрутами.

В досліді №1 при $[R_jH]_0 < 0,1 \cdot 10^{-4}$ моль·л⁻¹ кількості катіонів R_j^+ , що утворюються, і самих R_jH не достатньо для ізомеризаційних і фрагментаційних процесів, леткі продукти не зафіксовано. Швидкість реакції відповідає 1-му порядку по [RH]. В роботах Рудакова і співр. прийнято, що частинка, яка безпосередньо окислює зв'язок С – H, є SO₃H⁺. Припустимо, що через протонування H_2SO_4 і подальший відрив H_2O утворюються дві частинки:

 $H_2SO_4 + H^+ \rightarrow H_3SO_4^+$ і $H_3SO_4^+ \rightarrow SO_3H^+ + H_2O$, (3) які разом з молекулою вихідної H_2SO_4 можуть далі вступати в реакції з RH за двома механізмами (а і б), відриваючи атом H (а), або гідрид йон (б). Використовуючи напівемпіричний квантово-хімічний метод розрахунку PM3 (пакет MOPAC2016) оцінили термодинамічні характеристики цих 3-х частинок і параметри реакцій 2,3-ДМБ з їх участю за двома механізмами. Величини ентальпій (ΔH, ккал/моль) реакцій показують, що в механізмах а і б активнішою за H_2SO_4 (30,4, а; 187,3, б) є $H_3SO_4^+$ (21,2, а; 12,3, б) і найактивнішою SO_3H^+ (10,0, а; -24,2, б). Реакції відриву H^- з утворенням карбокатіона є суттєво вигідніші.

В досліді №2 при $[R_{2,3}H]_0 \sim 1.10^{-4}$ моль·л⁻¹ і $[R_jH]_0 \sim 0,1.10^{-4}$ моль·л⁻¹ спостерігається ІП, протягом якого ~ з однаковою швидкістю утворюються катіони \mathbf{R}_j^+ і $\mathbf{R}_{2,3}^+$; останні в концентрації, достатньої для початку карболанцюгового процесу ізомеризації до \mathbf{R}_2^+ і \mathbf{R}_3^+ :

$$\widehat{\mathbf{R}}_{2}^{+} \leftrightarrow \mathbf{R}_{2,3}^{+} \leftrightarrow \widehat{\mathbf{R}}_{3}^{+}.$$
(4)

Перенос ланцюга, де кожен з трьох \mathbf{R}_{i}^{+} відриває H⁻ від $\mathbf{R}_{2,3}$ H з утворенням продуктів ізомеризації, \mathbf{R}_{2} H і \mathbf{R}_{3} H, і регенерацією $\mathbf{R}_{2,3}$ H та носіїв ланцюга $\mathbf{R}_{2,3}^{+}$, представлено на схемі:

APGIP-9

Ukraine, Lviv, May 14-18, 2018

(2)

$$\mathbf{R}_{2}^{+} + \mathbf{R}_{3}^{+} + 2\mathbf{R}_{2,3}\mathbf{H} \leftrightarrow \mathbf{R}_{2}\mathbf{H} + \mathbf{R}_{3}\mathbf{H} + 2\mathbf{R}_{2,3}^{+}.$$
(5)

Паралельно до ізомеризації карбокатіони беруть участь ще в 2-х процесах. 1) Перебуваючи в рівновазі з олефінами, \mathbf{R}_i^+ (або \mathbf{R}_j^+ і на пізніх стадіях \mathbf{R}_k^+) \leftrightarrow Ol + H⁺, гинуть в результаті утворення алільних катіонів, \mathbf{R}_i^+ ($\mathbf{R}_j^+, \mathbf{R}_k^+$) + Ol \rightarrow R_iH (\mathbf{R}_j H, \mathbf{R}_k H) + All⁺, які переходять в стабільні циклоалкенільні катіони. 2) Фрагментують шляхом прямого розпаду: t-C₆H₁₃⁺ \rightarrow C₄H₈ + [C₂H₅⁺] і t-C₆H₁₃⁺ \rightarrow C₅H₁₀ + [CH₃⁺], (6)

або через алкілування олефінів з ізомеризацією димерних катіонів, що утворюються $t_{-}C_{+}H^{+} + C_{+}H_{+} \Rightarrow t_{-}C_{+}H^{+} \leftrightarrow t_{-}C_{+}H^{+}$

$$t - C_6 H_{13}^{-} + C_6 H_{12} \rightarrow t - C_{12} H_{25}^{-} \leftrightarrow t - C_{12} H_{25}^{-}, \qquad (7)$$

і далі розпадаються на фрагменти:

$$t - C_{12}H_{25}^{\prime +} \leftrightarrow C_4H_8 + t - C_8H_{17}^+ \quad i \quad t - C_{12}H_{25}^{\prime +} \leftrightarrow C_5H_{10} + t - C_7H_{15}^+.$$
 (8)

Олефіни C₄H₈ і C₅H₁₀, що утворюються, далі переходять в ізобутан та ізопентан в результаті протонування й переносу H⁻, як в рівнянні (5). Карбокатіони *t*-C₈H₁₇⁺ і *t*-C₇H₁₅⁺, можливо, перетворюються в ізооктани (*i*-C₈H₁₈) та ізогептани (*i*-C₇H₁₆). Ізоалкани ряду C₄ – C₈ приймають участь в процесах, розглянутих для R_iH і R_jH. Катіони CH₃⁺ і C₂H₅⁺ швидко приєднуються до олефінів, або переходять в алкілсульфати, метан й етан не утворюються.

Використаний метод не дозволяє хроматографічно розділити ізомери RH, тому вимірювані концентрації 2,3-диметилбутану, 2-метилгексану і 3-метилгептану складаються відповідно з сум всіх можливих ізомерів {[2,3-ДМБ]+[2-МП]+[3-МП]}, а також з можливих продуктів $\sum_{i=1}^{n} [i - C_7 H_{16}]$ і $\sum_{i=1}^{n} [i - C_8 H_{18}]$, що знижує спостережувану константу для цих трьох субстратів. Дійсно, для 3-Ме-С₇H₁₅ k_1 в досліді №2 в 2 рази менше, ніж при відсутності ізомеризації в досліді №1. Непряме підтвердження утворення продукту (прод.) ізопентану, який переходить в газову фазу реактора, де знаходиться субстрат (суб.) i-C₅H₁₂, є зниження константи за рахунок підвищення вимірюваної поточної концентрації ізопентану, [i-C₅H₁₂] = [i-C₅H₁₂]_{суб.} + [i-C₅H₁₂]_{прод.} Перші 2 год витрати i-C₅H₁₂ практично не має, після ІП його константа швидкості ~ в 2,5 рази менше, ніж в досліді №1. Коли накопичення \mathbf{R}_i^+ стає швидкість лімітуючою стадією, кінетика краще відповідає порядку по $[\mathbf{R}_i\mathbf{H}]$ нульовому, або проміжному між нульовим і 1-м для субстратів і нульовому для продукта i-C₄H₁₀.

Результати цієї роботи узгоджуються з даними [5-6] і дозволяють зробити такі висновки. 1) В гомогенних умовах в 94 % H₂SO₄ ізогексани ізомеризують до зміни розгалуженості, метилпентани \leftrightarrow диметилбутан, і фрагментують до *i*-C_nH_{2n+2}, де n = 4, 5 і 7, 8, як в умовах індивідуальної [5-6], так і конкурентних реакцій при [RH]₀ = (1 – 50)·10⁻⁴ моль·л⁻¹, достатньої для карболанцюгових перетворень. При [RH]₀ \leq 0,1·10⁻⁴ моль·л⁻¹ RH окислюються без ізомеризації. Активна частинка є SO₃H⁺. 2) В гетерогенних умовах при відношенні об'ємів RH:H₂SO₄ = 1:1 впродовж всього процеса [RH] в H₂SO₄ максимальна. При надлишку донорів H⁻ швидкість переносу H⁻ вища, тривалість життя R⁺ нижча, ніж в гомогенних умовах, 2-МП ізомеризується до 3-МП; 2,3-ДМБ і продукти фрагментації відсутні [7].

Література

[1] Rana M.S. Heavy Oil Refin. Proces. Petrochemicals: A Role of Catalysis. Recent Adv Petrochem Sci. 2017. 2(1).

- [3] Periana R.A., Taube D.J., Evitt E.R., Loffler D.G. et al. // Science. 1993. Vol. 259 P. 340.
- [4] Chempath S., Bell A. T. // J. Amer. Chem. Soc. 2006. Vol. 128. N14. P. 4650.
- [5] Рудаков Е.С., Волкова Л.К., Тищенко Н.А. // Кинетика и катализ. 1988. Т. 29. № 6. С. 1344.
- [6] Рудаков Е.С., Волкова Л.К., Тищенко Н.А. // Кинетика и катализ. 1989. Т. 30. № 3. С. 579.
- [7] Алкилирование. Исследования и промышленное оформление процесса. М.: Химия, 1982. 336 с.

^[2] Рудаков Е.С. Реакции алканов с окислителями, металлокомплексами и радикалами в растворах. – Киев: Наук. думка, 1985. 248 с.