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Abstract — Uncertainty calculation task is discussed in the
paper. Monte-Carlo method for uncertainty evaluation is
covered. It is used for uncertainty evaluation of a proposed
measurement scenario. In order to validate the Monte-Carlo
method, long-run success rate estimation procedure is
presented. Application of such procedure showed unexpected
invalid results of uncertainty evaluation. A modification of the
Monte-Carlo method is proposed that appears to deliver more
valid results.
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[. Introduction

A statement of the result of a measurement is only
complete if it provides an estimate of the quantity
concerned (often known as the measurand) and a
quantitative measure of the reliability of that estimate,
namely, the uncertainty associated with it.

Generally, several approaches to provide an estimate of
the measurand, and the associated uncertainty (e.g. a
coverage interval) for the measurand that is needed for
conformity assessment and other decision making can be
used. These approaches include Principle of Maximum
Entropy, Bayesian treatment (probabilistic modeling) and
Propagation of distributions (functional modeling) [1].
The latter is used to relate the measurand to model input
quantities about which information is available, and is the
basis of obtaining the probability density function (PDF)
for the measurand from the PDFs assigned to the input
quantities. In some simplest cases the PDF for the
measurand can be obtained analytically. Otherwise,
approximate and numerical implementations of the
propagation of distributions are available, such as the ISO
Guide’s uncertainty framework [2] and a Monte Carlo
method (MCM) [3]. The preferred use of MCM
comparing to approximate analytical methods is shown in
a number of studies[3,4,5].

In this paper, it is assumed that a model and PDFs for
all input quantities are given. Thus, the second phase
“calculation” of uncertainty evaluation procedure is
discussed.

The goal of this paper is to highlight invalid solution of
a simple measurement scenario by the MCM and
therefore a need for its (possible) improvement and
independent validation of usability of all candidate
solution approaches.

Section II gives an account of MCM in brief. Section
III covers the measurements scenario and uncertainty
evaluation results by the MCM. Section IV presents
modification of MCM intended to provide more valid
results. Summary and draws of some conclusions are
given in the Conclusions.

[l. Monte-Carlo method

Regardless of the field of application, the physical
quantity of concern, the model output quantity, can rarely
be measured directly. Rather, it is determined from a
number of contributions, or input quantities, that are
themselves estimated by measured values or other
information available.

The fundamental relationship between the input
quantities and the output quantity is considered to be the
model[6]. The input quantities, n, say, in number, are

denoted by X =(X1,...,X n)T and the output quantity by

Y:(Yl,...,Yn)T. The model Y =f(X) can be a

mathematical formula, a step-by-step calculation
procedure, numerical software or other prescription. Let

us assume that PDF for X:(Xl,...,Xn)T and f(X)are
known. Estimate y of quantity Y is the measurement

result. Then, the problem of uncertainty evaluation is the
estimation of PDF of the output value g(y) (or the

distribution function G(y)) and therefore the estimation

of moments and coverage regions(intervals for scalar) for
y . The latter are needed for conformity assessment and

decision making purposes, so its evaluation is the main
result of uncertainty evaluation procedure.

According to the so-called Markov formula, if
0(-) denotes the Dirac delta function and g;,(x) denotes

the joint PDF of input quantities, the PDF g(y) could be
generally found as[3]:

g = | [ - [euw®(=fOe)dxyd,y..dx (1)

It would rarely be a practical proposition to use the
integral expression (1) as the basis for the numerical
determination of the PDF for the output quantity. A
multivariate quadrature rule would need to be devised that
was capable of delivering a prescribed numerical
accuracy for each choice of y . Rather than attempting to

evaluate the expression (1), an application of a MCM [3]
encompasses an entirely different approach, based on the
following considerations.

MCM uses pseudorandom numbers to obtain
representative draws of possible values of the input
quantities in order to generate a discrete representation of
the output quantities via the given model[3]. The MCM
computes from these draws the expectations and
covariance matrix for the output quantities and a
frequency distribution that approximates the joint PDF for
the output quantities, the use of which provides best
estimates of the output quantities and the associated
uncertainty matrix (covariance matrix). Furthermore, the
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marginal PDF for any output quantity can be
approximated accordingly and used to form coverage
intervals for that quantity. If rules are given, MCM can
also be used to determine, from the joint PDF, coverage
regions for the output quantitiecs. MCM provides
approximations to the exact results that would be
provided by analytical methods[4].

As stated in a number of studies[3,4,5], the quality of
these approximations generally improves with the number
of draws, and therefore a check on the convergence of
MCM and careful ‘validation’ of the procedure are
required. Some criteria and recommendations that come
out in an adaptive MCM with reduced computing
complexity are given[7].

[Il.The measurement scenario
and MCM calculation
Let us consider a measurement of the magnitude of a
complex valued quantity Q = Q; +7Q, [8]. Measurements
of the real and imaginary components yield z =z +iz,,
from which an estimate of |Q| can be found:

| z|= /28 +23 @)

We further consider that z; and z, are independent and

have standard uncertainties equal to a known value u
associated with a Gaussian distribution.

Application of the adaptive MCM[7] is used here. The
application of this method here can be described in a
series of steps.

1) Generate a sequence of samples zj; and z,;, where
= i=1,..,L by drawing from a Gaussian distribution with
mean z; and z,,and variance u’ for both of them. L is
not chosen a prior but adaptively by means of procedure,
described in[] for a required accuracy for estimates. In our
scenario case, we require £ =0.01 accuracy, that shall be
enough for purposes described later in this section.

2) Calculate | z; |according to Eq. (2) for i=1,..,L .

3) Sort the values of | z; |in ascending order.

4) Take the 0.025Lth value of |z; | as the lower bound
of the uncertainty interval, Take the 0.975Lth value of
| z; | as the upper bound of the uncertainty interval.

The result is an interval said to have 95% probability of
containing | Q|[3]. Other coverage probabilities can also
be applied with use of respective quantiles in step 4).

In order to assess the long-run success rates of the
MCM, a series of simulated measurement results is
processed. Pairs of data (z[j],z,[/]), j=1..,10000, are
simulated and each pair is used as if it were the data
obtained from an independent measurement of the same
fixed measurand. The procedure is as follows.

1) A value for Q =, +i€, is selected.

2) A sequence of pairs (z[j],z;[/j]) is drawn from
independent Gaussian distributions with means €; and
€, , respectively, and variances v’

3) For each pair, a 95% uncertainty interval is
calculated as described above and a counter is
incremented if that interval contains | Q|.

4) The success rate of a procedure is estimated from the
respective counter value divided by the total number of
runs and multiplied by 100%.

These steps assess the success rate of a procedure at
one fixed value of the measurand. In order to investigate a
procedure’s performance over a range of values, the
method should be repeated with different measurand
values, selected at step 1.

The symmetry of the scenario means that performance
will be independent of the radial coordinate of the
measurand in the complex plane. So, without loss of
generality, ten |€Q|/u values lying along the real axis

were chosen. For each measurand value, simulated
experiments provided 10000 sets of input data for the
MCM uncertainty estimation. The results are summarized
in Table I. The second column of this table report the
percent of successes. We should note, that some
variability in the percent of successes observed can be
expected. For a success rate of p = 0.95, the standard
deviation of the percent of successes observed

is100% *\Np(1— p) /N , which is approximately equal
to 0.22% in our case.
TABLE 1

PERCENT OF SUCCESSES FOR THE MCM

| Q| /u Success rate
0.01 0%
0.05 0%

0.1 0%

0.2 0%

0.4 66,34%
1.0 90.25%
2.0 93.44%
4.0 95.12%
10.0 94.94%
100.0 95.17%

An unexpected fall in the success percents occurs when
the measurand is close to the origin. The method fails to
reach the required percents of success for ||/« <2.0 and

fails on every occasion when |Q |/u <0.224 . The core of
this problem seems to be in asymmetry of the | Q| PDF, if
we use MCM with z, =0 and z, =0 and a standard

uncertainty u = 1. The lower bound of the 95% uncertainty
interval for this data is | z; |=0.224, and we should expect

this bound to increase for any other MCM sample, so any
measurand |Q |< 0.224 will fall outside the uncertainty

intervals that can be generated. This explains the success rate
of zero in the first four rows of Table 1.

With the importance of traceability in metrology,
methods used to calculate uncertainty should perform
well in an event-based paradigm[2,8], because it is
ultimately the accuracy of measurement and calibration
events that is required. Failure of a method to do so is
surely of concern. Consequently, valid methods of
uncertainty calculation must achieve acceptable rates of
success in the intended measurement scenarios.
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What metrological meaning should be given to a nominal
95% coverage interval that is unlikely to contain the value of
the quantity intended to be measured? We consider such a
solution interval to be invalid in terms of long-run success
rate. For our measurement scenario MCM should be treated
as valid only with defined limits of usability, that is if
| Q|/u>2in our case, e.g. if standard uncertainty is twice

less the measurand value. It may be useful to note, that if we
increase dimensionality of the magnitude measurement
problem that “usability limit” is intended to increase.

IV. Modified adaptive MCM

A modification of the MCM is proposed in attempt to
overcome the problem described above. It is proposed to
find a coverage interval such as the shortest interval that
contains pL MCM trials, where p is a coverage

probability. Such interval should be used instead of one
found at step 4) of the MCM procedure. Such approach is
expected to take asymmetry of PDFs into account.

It should be clear that such an interval could be not
unique(e.g. for rectangular distribution). Such cases should be
treated properly. For example, we can take the interval that is
most closest to the center of all sample values of the MCM.

Because the array of MCM samples is sorted, the
problem can be simplified to finding the argument value
of the minimum difference. It can be written as:

argmin(zy p; —2) 3)
k=1.—
l-p

Appropriate intuitive algorithm for solution of Eq.(3) can
be implemented straightforward. Solution of this task will
not invest a computing problem. It is obvious that computing
time is O(L), that will slightly increase overall computing

time of the MCM][3,7]. We should also note that MCM(even
adaptive, the one we use here) is a comprehensive
computational task[7,9], method improvements to decrease
computational time should be developed.

If k=1 gives the solution of Eq.(3), thus, the lower
bound of uncertainty interval is the smallest MCM
sample, application of the adaptive procedure[] could
cause difficulties. Consequent discussion and possible
solution is beyond the scope of this paper.

To assess the long-run success rates of the proposed
modification of the MCM, the procedure, described in
Section III is implemented for the same measurement
scenario for ten values of |Q|/u. The results are

summarized in Table II.

TABLE 2
PERCENT OF SUCCESSES FOR THE MODIFIED MCM
|Q|/u Success rate
0.01 0%
0.05 0%
0.1 5.09%
0.2 59.11%
0.4 82,34%
1.0 92.31%
2.0 94.99%
4.0 94.85%
10.0 95.13%
100.0 95.19%

An increased performance of the modification comparing
to MCM results can be observed. The modification should
be treated as valid with| Q |/« >1 limit of usablity in our

case that is wider then for the MCM. Better performance
should be expected in general case of a measurement
problem, that is to be investigated in future work.

The result obtained means that modification can be
used even if standard uncertainty and the measurand
value are approximately equal and will yield invalid
results if uncertainty is greater than measurand value.

Conclusions

In this paper, an adaptive MCM procedure for
uncertainty calculation is used to evaluate coverage
intervals for measurement scenario of magnitude
measurement of a complex valued quantity.

The validation procedure for the MCM is proposed and
implemented for the measurement scenario. Results of
such validation discovered invalid results of coverage
intervals calculation for the values close to the origin with
comparitevly big uncertainty.

Modification of the MCM is presented. Modification is
based on finding the smallest interval that contains respective
number of MCM samples. Validation of such approach
showed significantly better performance results, with appro-
priate wider scope. Such modified MCM should be used in
practice as a more valid one instead of original MCM.

Further work will include wider research of the
modified adaptive MCM, improvements of the method
and its implementation on multiple processor and
distributed computing systems.
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