ON DIFFERENTIAL GAMES UNDER CONVEX INTEGRAL CONSTRAINS ON CONTROLS

Summary. The paper deals with the problem of the approach of a trajectory of a linear conflict-controlled process to a linear subspace in the case of convex integral constraints on the player's controls. Using the technique of set-valued mappings and convex analysis (epigraph of a function, recession cone), we obtain sufficient conditions for problem solvability in the class of measurable controls.

Key words: differential game, integral constrains, resolving function, set-valued mapping, recession cone.

Dynamics of a game is set by the linear differential equation

$$
\mathbf{\pmb{\xi}} = Az + Bu - Cv, \quad z(0) = z^0, \quad z \in \mathbb{R}^n, \ u \in \mathbb{R}^m, \ v \in \mathbb{R}^l \,. \tag{1}
$$

The controls of the player-pursuer $u(\cdot)$ and the evader $v(\cdot)$ are Lebesgue measurable functions that satisfy the integral constraints:

$$
\int_{0}^{\infty} j(u(t))dt \le 1, \quad \int_{0}^{\infty} y(v(t))dt \le 1.
$$
 (2)

The function j , $j : \mathbb{R}^m \to \mathbb{R}$, is assumed to be nonnegative, convex, and lower semicontinuous [1]. Suppose $j(0) = 0$ and the level set $\Phi(g) = \{u \in \mathbb{R}^m : j(u) \leq g\}$ is limited to at least one nonnegative number g . The function y , $y: V \to \mathsf{R}$, $V \subset \mathsf{R}^l$, is assumed to be nonnegative and upper semicontinuous on its domain of definition *V*. The terminal set *M* is a linear subspace \mathbb{R}^n .

We denote by *p* the projection onto the orthogonal complement L to the subspace M in \mathbb{R}^n .

Condition. There exist a number l , $0 \le l < 1$, such that for all t, $t \ge 0$, and v, $v \in V$, holds the *inclusion*:

$$
pe^{At}Cv \in pe^{At}B\Phi(I \cdot y(v)).
$$
\n(3)

We consider an auxiliary function, which can be called the resolving function of a differential game under integral constraints: $g(t, t, y) = \sup \{g > 0 : g(t)g + h(t, y) \in H(t) \text{ on } t\}$

$$
g(t, t, v) = \sup \{g \ge 0 : a(t)g + b(t, v) \in H(t) \text{ ept } y\},
$$

where

$$
a(t) = \begin{pmatrix} -pe^{At}z^{0} \\ 1-I \end{pmatrix} b(t, v) = \begin{pmatrix} pe^{At}Cv \\ Iy(v) \end{pmatrix}, H(t) = \begin{pmatrix} pe^{At}B & 0 \\ 0 & 1 \end{pmatrix}: R^{m} \times R \to L \times R,
$$

onif $= \begin{cases} c(u, w) \in R^{m} \times R : m > 1 \text{ (a)} \text{ is an integer } b \text{ is an integer } m \text{ is an integer } m \text{ and } v \text{ is an integer } m \text{ is an integer } m \text{ and } v \text{ is an integer } m \text{ is an integer } m \text{ and } v \text{ is an integer } m \text{ and }$

 $\text{epi } j = \{(u, m) \in \mathbb{R}^m \times \mathbb{R} : m \geq j(u)\}$ – epigraph of j [1], $(t, t, v) \in \mathbb{R}_+ \times \mathbb{R}_+ \times V$, $\mathbb{R}_+ = [0, \infty)$.

We recall [1] that the recession cone 0^+W of a convex set *W*, $W \subset \mathbb{R}^k$, is the set $0^+W = \{ a \in \mathsf{R}^k : a + W \subset W \}$. Define the set $\Delta = \{ (t, t) \in \mathsf{R}_+ \times \mathsf{R}_+ : a(t) \notin H(t) \cdot 0^+ \text{ epi} \}$

Theorem. *Suppose that condition (3) is satisfied for the parameters of the game (1)-(2). Let there exists a moment* $T = T(z^0)$ *such that* $\{T\} \times [0,T] \subset \Delta$ *and for all admissible controls v*(·) *holds* the inequality $\int_0^T g(T, T-t, v(t)) dt \ge 1$. Then the differential game can be completed at time T, i.e. for *any admissible evader's control* $v(t)$ *there is an admissible pursuer's control* $u(t)$ *that guarantees the* approach of the solution of equation (1) $z(t)$ corresponding to the controls $(u(t),v(t))$ and initial position z^0 to the terminal set at moment $T : z(T) \in M$.

References

1. Rockafellar R.T. Convex Analysis. Princeton University Press, Princeton, N.J., 1970.