NEW COBALTITES AND CHROMITES WITH A DISTORTED K₂NiF₄ TYPE OF STRUCTURE

L. Vasylechko¹, A. Fedorchuk², D. Trots³, Yu. Prots⁴, M. Schmidt⁴, S. Hoffmann⁴ ¹Lviv Polytechnic National University, Lviv, Ukraine ²Lviv National University of Veterinary Medicine and Biotechnologies, Lviv, Ukraine ³HASYLAB at DESY, Hamburg, Germany ⁴Max-Planck-Institut für Chemische Physik fester Stoffe, Dresden, Germany E-mail: crystal-lov@polynet.lviv.ua

Oxometalates $RCaMO_4$ and $RSrMO_4$ (R = rare earth, M = transition metal) with the structures related to K₂NiF₄ display very interesting phase and structural behaviour both at low and high temperatures and exhibit a rich variety of physical properties, which are potential for the further application [1-3]. Recently, four new $RCaMO_4$ phases were found in the R_2O_3 -CaO- M_2O_3 quasi-ternary systems [4]. Starting from the mixture of the respective oxides and CaCO₃, the cobaltites EuCaCoO₄ and TbCaCoO₄ were obtained by solid state reaction in air at 1470 K, whereas chromites TbCaCrO₄ and ErCaCrO₄ were synthesized by arc melting in Ar atmosphere. The phase and structural behaviour of these compounds in the temperature range of 298–1200 K was examined in situ by high-resolution X-ray synchrotron powder diffraction and using DTA technique. X-ray absorption spectroscopy was applied for the estimation of the valence state of terbium, chromium and cobalt. $EuCaCoO_4$ and $TbCaCoO_4$ are isotypic with the respective samarium and gadolinium cobaltites (La₂CuO₄ structure type, space group *Bmab*) and posses orthorhombically distorted K₂NiF₄ type of structure. Both compounds undergo structural phase transitions to the tetragonal structure at the temperatures of 440 K and 970 K, respectively. At ambient conditions ErCaCrO₄ structure is also isotypic with La₂CuO₄. In contrast, weak reflections in the powder X-ray diffraction diagram of TbCaCrO₄ obtained at room temperature indicate a primitive orthorhombic lattice. The structure was found to be isotypic with $La_{0.8}Sr_{1.2}InO_{3.9}$ (space group *Pbca*). High temperature powder X-ray diffraction examination of TbCaCrO₄ revealed structural changes at around 720 K to the base-centered La₂CuO₄ type of structure. Further phase transition into the tetragonal K₂NiF₄ type of structure was predicted for TbCaCrO₄ at 1560 K by the extrapolation of the unit cell parameters a and b of the orthorhombic phase. Structural peculiarities and thermal behaviour of the newly prepared cobaltites and chromites are discussed with the related RCaMO₄ compounds (M = Fe, Co, Ni, Cr, Al, Ga).

Acknowledgements: The work was supported in parts by the Ukrainian Ministry of Education and Science (Project DB "Tern") and ICDD Grant-in-aid program. L. Vasylechko acknowledges the Max-Planck Society for a research fellowship.

References

- [1] G. Payom and M. Daire, Rev. Chim. Min., 14, 11 (1977).
- [2] R. Berjorann et al., J. Solid State Chem., 42, 75-79 (1982).
- [3] A. Morales Sanchez et al., J. Alloys Compd., 203, 143 (1994).
- [4] L. Vasylechko, Yu. Prots, M. Schmidt et al., HASYLAB Ann. Rep. 1, 717, (2007).