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The k-Fibonacci and k-Lucas polynomials [2] are the natural extension of the k-
Fibonacci and k-Lucas numbers and many of their properties admit a straightforward
proof. The Fibonacci sequence and the golden ratio have appeared in many fields of
science including high energy physics, cryptography and coding [1, 5].

Definition 1. The Fibonacci polynomial F,(z) is defined recurrently
relation

Foga () = 2By (2) + Foa () (1)
with Fy(z) =0, Fi(z) =1 for n > 1.

Fibonacci polynomials for negative subscripts are defined as F_,(x) =
= (-1)""E,(z) forn > 1.

Definition 2. The Lucas polynomial L,(z) is defined by the relation
Lnt1(x) = xLn(x) + Ly-1(x) (2)

with Lo(z) =2, Li(z) =z for n > 1 and L,(z) = F41(x) + F,,_1(x) for n € Z.

If z = 1, the classic Fibonacci and Lucas sequences are obtained from (1), (2) [3—
5].
Lemma. If X is a square matrix with X? = X +1I, then X" = F,(z)X + F,_1(2)I
for all n € Z.

Theorem 1. Let Q(z) = < T (1) > Then
n _ Fopi(z)  Fu(x) .
1) Q(zx)" = < Fo@) By (x) for all n € Z;
2) det Q(z)"™ = (—1)" (Cassini’s identity).
Theorem 2. Let R(z) = < _23: ) Then
1) Q(z ) = R(z)Q(x) o)
L +1 Ly (x .
2) Q(z ) < . Los (%) > for all n € Z;
3) det( (x)"R(x)) = (— ”+1(ac +4) (Cassini’s identity).
Theorem 3. The n-th Fibonacci polynomial may be written as F,(x) = ﬁ%%w
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being o = (Binet’s formula).
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