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The k-Fibonacci and k-Lucas polynomials [2] are the natural extension of the k-
Fibonacci and k-Lucas numbers and many of their properties admit a straightforward
proof. The Fibonacci sequence and the golden ratio have appeared in many fields of
science including high energy physics, cryptography and coding [1, 5].

Definition 1. The Fibonacci polynomial Fn(x) is defined recurrently
relation

Fn+1(x) = xFn(x) + Fn−1(x) (1)

with F0(x) = 0, F1(x) = 1 for n > 1.

Fibonacci polynomials for negative subscripts are defined as F−n(x) =
= (−1)n+1Fn(x) for n > 1.

Definition 2. The Lucas polynomial Ln(x) is defined by the relation

Ln+1(x) = xLn(x) + Ln−1(x) (2)

with L0(x) = 2, L1(x) = x for n > 1 and Ln(x) = Fn+1(x) + Fn−1(x) for n ∈ Z.

If x = 1, the classic Fibonacci and Lucas sequences are obtained from (1), (2) [3–
5].

Lemma. If X is a square matrix with X2 = xX+I, then Xn = Fn(x)X+Fn−1(x)I
for all n ∈ Z.

Theorem 1. Let Q(x) =

(
x 1
1 0

)
. Then

1) Q(x)n =

(
Fn+1(x) Fn(x)
Fn(x) Fn−1(x)

)
for all n ∈ Z;

2) detQ(x)n = (−1)n (Cassini’s identity).

Theorem 2. Let R(x) =

(
x 2
2 −x

)
. Then

1) Q(x)R(x) = R(x)Q(x);

2) Q(x)nR(x) =

(
Ln+1(x) Ln(x)
Ln(x) Ln−1(x)

)
for all n ∈ Z;

3) det(Q(x)nR(x)) = (−1)n+1(x2 + 4) (Cassini’s identity).

Theorem 3. The n-th Fibonacci polynomial may be written as Fn(x) =
σn−(−σ)−n

σ+σ−1

being σ = x+
√
x2+4
2 (Binet’s formula).
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