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Po3rasinyTo MeroaM AeKOMMO3MUIl i CHHTEe3y YHMCI0BUX €XeM Ha 0a3i AMCKpPeTHO-
HeMmepepBHUX MOJATBHHUX METOMIB Ta BHUKOHAHO AHAJI3 HUIAXIB JOCTIIKEHHS MOBETiHKHU
CKJIAJHUX MeXaHi3MiB, 3Ba’kalouM Ha IXHI0 B3a€MOJiI0 3 CHCTEMOI0 MOIJIMHAYIB JMHAMIYHOT
BiOparrii.

Kuarouogi cioBa — Biopauisi, morsiunay, MassiTHUK

The main aim of this paper is pendulum type dynamic vibration absorbers attached to
the elongated element design with taking into account complex machines dynamic Methods of
decomposition and the numerical schemes synthesis are considered on the basis discrete-
continuum modal methods. Investigation of complicated machines in view of their interaction
with system of dynamic vibration absorbers is under discussion.
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Introduction

Machines will typically introduce both acoustic and vibration energy into any fluids or structures
surrounding the machinery. This is dangerous for both for its construction strength and human health.
From two general classes of tools used to assess and optimize machines acoustic performance: test based
methods and Computer Aided Engineering based methods, the second should be discussed in this paper.
Large elongated elements, particularly such elements as big masts of fire machines or derricks elongated
elements of agricultural machines, are dynamically unbalanced during operation due to their exposure to
various factors. It is often impossible to balance these elements to reduce the vibration to an acceptable
level.

The paper contemplates the provision of dynamic vibration absorbers (DVA) or any number of such
absorbers [1,2]. Such originally designed absorbers reduce vibration selectively in maximum vibration
mode without introducing vibration in other modes. In order to determine the optimal parameters of an
absorber the need for complete modelling of machine dynamics is obvious. Present research has developed
a modern prediction and control methodology, based on a complex continuum theory and the application
of special frequency characteristics of structures.

Former investigations

The two most popular computational methods used in structural dynamics are: the finite element
method (FEM) and the boundary element method (BEM). While investigating higher frequency ranges for
acoustic applications and using finite elements, structures are decomposed into smaller and smaller
elements. The mesh size is chosen so that its largest dimension does not exceed the wavelength of the
vibration. Going in this direction, when dealing with complex and large structures, the number of elements
often becomes prohibitive. The calculation of eigenvalues in the range of medium frequency becomes
cumbersome and time consuming.

Since the dynamic characteristics of some structural systems may be predicted by using a beam
carrying single or multiple concentrated elements, the literature concerned is plenty. In [3] the vibration
analysis of a uniform cantilever beam with point masses by an analytical-and-numerical-combined method
is performed The frequency equations of a Bernoulli-Euler beam to which several spring—mass systems
are attached in span were investigated in [4]. In [5] a spring—mass system and gave many numerical
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examples with different boundary conditions. The approach presented in. [5] was based on the method
which divided the beam into segments from the point attached to the spring—mass system. For the vibration
analysis of beams with various attachments, various classical analytical methods are presented to solve the
similar problems [6-10]. The hybrid methods and lumped-mass (model) transfer matrix method are one of
the known approaches in early years [11-14]. From reviews of the existing literature [3—15], one finds that
the information regarding the vibration analysis of a non-uniform beam with various boundary conditions
and carrying multiple sets of pendulum type concentrated elements is rare, thus, the purpose of this paper is
to extend the theories of [15-20] to the presented structures.

Aspects of modeling

The numerical schemes (NS) row for the complex vibroexcitated construction and methods of
decomposition and the NS synthesis are considered in our paper on the basis of new methods of modal
synthesis [15-23]. Complex NS of discretely-continua type are used. In the adaptive mode they can be used
to calculate tension not only in the stratified elements, but also in places of its highest concentration in
joints. The problem of DVA design may be divided into such steps (Fig.1)
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Fig.1. DVA — machine system scheme design Fig.2. DVA design scheme optimization

In Fig.2. steps of DVA design are presented. It is not a comprehensive list of criterions. This list
may be completed, for example, by such criterions: damage control, aesthetic design etc. Not at the lust
place must be DVA design simplicity, especially for the theoretical purposes. Most important from them is
criterion “vibration absorbing properties optimization”. This important criterion should be discussed later.
It is not enough attention paid to such an important criterion as DVA resource optimization. In order
optimal parameters of dynamic vibration absorber (DVA) to be determinate the complete modeling of
dynamics of machine is obvious. The two degrees of freedom model is totally inadequate to calculate the
vibration frequencies of the construction with accuracy and therefore, for a sufficiently accurate
determination of its dimensional characteristics so as to determine such frequencies. It is therefore
necessary in practice to dimension the construction through more complex modeling. In particular,
concentrated mass and rigidity calculation methods may be adopted based on an even more accurate
theoretical determination.

Dynamic equations

Problem of vibration fields modeling of complicated designs deformation and strain is considered
for the purposes of dynamic absorption. The problem is solved on the basis of modified method of modal
synthesis. The basis of these methods is in deriving solving set of equations in a normal form at minimum
application of matrix operations. The essence of the first method consists in reviewing knots of junctions as

compact discrete elements A’ for which inertial properties are taken into account without reviewing their

strain, and massive connected parts - as deformable elements A, their inertion being taken into account on

the basis of modal expansion.
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For every point X=(x,y,z) of 4 we have

4,09, (X)
U, X)= , (1)
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Here ¢y;(X),...,¢,;(X) are coordinate functions, g;;(¢),...,q,;(¢) — corresponding independent time

functions. By variation of strain U; and kinetic K[ energies for A7 we have
US = (K{“-q;)" -8q; , Kf =(M[“-q;)" -8q; . 2)
Here
T
g = @i tavetmi] -
By variation of strain U;" and kinetic K’ energies for connecting and attached discrete element 4;" we have
8U; =k (q;(t)=q,(ho, (Xy' )) (Bq;(t)=5q,(1)o, (X@/)) 3)

Here X are point of contact of discrete element 4;' and continual element 45 and k;;—

corresponding rigidity of connection. For the mass-less joints of continual elements we must add to the
strain energy such terms

oU; :kij(qi(t)pi(Xij)_q]'(t}pj(Xij))'

4
'(Sql'(t)(pi(Xij)_&]j(t)(pj(Xij))
Kinetic energy variation of discrete one-mass element 4" is
81<l'n =m; ql'n'aqin . (5)
By Hamilton-Ostrogradsky variation equation
4]
[BU-8Kpt=0
lo
equating terms by independent variation parameters in (2-5) we obtain [9-12]
M G +K -q)8dq =0, (6)

a set of ordinary differential equations.

Beam modeling

For the beam modeling let us consider nonuniform Timoshenko beam. The kinematical hypothesis
are (for pure bending) are

U(X,Y,Z,0)=v(x,t)- Z, W(X,Y,Z,t)=w(x,1). (7)

By substitution of (7) into the variation Hamilton-Ostrogradsky equation

L 2 2
j E[ﬂ6@+GF(y+a—Wj6y+p1ﬂ6y++GF(y+a—W)66—W+pFa—W5W dx=F, (8)
ox Ox ox or? ox ox ot

and taking the power series expansion for the functions
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we obtain a set of ordinary differential equations for unknown time dependent functions (written in matrix
form)

R
=f (10)

> (5>
(Here [M] and [C] are well known mass and rigidity matrix, » = ( q, pJ — vector of unknown functions,

_)
f vector of outer forces.)

Pendulum modeling

Let us consider two pendulums. The first — ordinary massive pendulum (Fig.3), and second — two-
mass pendulum with an additional spring (Fig.4). For the pendulum type DVA let us consider such a model
(Fig.3)

The additional variations of the kinetic and potential energies caused by elastically suspended
pendulum are

5K, =M 6Xm5 oX,, +6Ym8 oY, , 8U,, = KLSL + Mg, (11)
Ox Ox Ox Ox

L= \/(Xm + WCOS(OL))2 +(Lo =Y, + WSi“(O‘))2

dL {(W + Lo +cos(a)X ), —sin(a)Ym )W } ‘ (12)

SU, =K—
" +(W cos(a)+ X, )8X ,, + (= Lo —W sin(a)+ Y, )8Y,,,

L
For the completely rigid pendulums their effective length (length of equivalent mathematical
pendulum) are:

2
- fyme 2] m1L12+m2Lgf%%
o

for the pendulum in Fig.3; L, =
m, +2M ) 2 .
mL{ +my /Lz + kai'tg %
2

Here for the first pendulum M is a concentrated mass and m, is a mass of the beam; for the second
pendulum m; , m, are the masses of first and second pendulum, L, L,— their effective lengths, a;,a, are
lengths of the elements 8 and 7, b is a distance between pendulums and k is a rigidity of the spring 13
(Fig.4).

Combined now the set of equation for beam (10) and (11,12) we obtain the complete system of
dynamic equations

in Fig.4.

—

d* R
dt?

[Mp]=——+[cr]R=f (13)

- |>->
Here [M p] and [Cg] are complete mass and rigidity matrix, » =| ¢, p,X,,,Y,, | — complete vector of

4}
unknown functions, f the same vector of outer forces.
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Fig.3. Mast — single pendulum system Fig.4. Two mass pendulum

Numerical results

Let us at first consider the case of elastically connected DVA. If the rigidity of elastic element is k&
and mass is m and the additional kinetic and potential energies variations are:

sk :M[axa [axa

_D U =k(X, -W)3X, —5W)

Ox Ox

The set of dynamic equations has now the same form as in (13). For the proportional viscous
damping this equations may be written in such form

%
dR - -

Q2R
+[D]7+[CR]R =f (14)

M
MRl
In Fig.5. results are presented for impact loading of beam with the elastically connected DVA for
various masses of DVA. DVA are appropriately optimized (Fig.7). In Fig.7. the results of ptimization are
presented. The evaluation function was F, = max 7. (W(T)).

The mass of the tapered beam was 150kg and length 15m
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Fig.5. Dynamic response by impact (elastically connected

Fig.6. Dynamic response by impact (pendulum DVA)
DVA)
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Fig.7. The evaluation functions for elastically clamped DVA: (a) M=3kg, (b) M=10 kg

Conclusion

As the model of many actual systems in the literature, Timoshenko tapered beams with console
supporting conditions and DVA of various type additions are used. However, in these applications the
DVA'’s are frequently assumed to be elastically clamped. In the present study, a pendulum type DVA with
one or two masses is modeled with the transverse vibrating rod, attached to the tip of a cantilevered beam
together with an additional mass, thus composing the system under study. The dynamic equation of this
combined system is derived. Comparison of the numerical results with the elastically clamped DVA and
pendulum type DVA case reveals the fact that this second is more preferable for some parameter
combinations.
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AHaJi3 3 NpuBOAY BIUIMBY FeOMeTPHYHUX BiIXWJieHb i 0c00JMBOCTel MaTepiandy BHAOB-
0aHOl KOHIYHOI JUCKOBOI NMPY:KUHHM HA pe3yJbTATH il MapaMeTpHYHOI onTHMi3anii 0yJio mpen-
cTaBJeHO B poOoTi. Majsenbka Bapianis ¢yHkuii — 3HaAYeHHA KpUTepil0 3 BiIXuJIeHHSIMH
3aleBHAI€ KOPEKTHICTh HediHiliHOT onTHMIi3alii, 10 mependayaeTbes, MOAETIOIOTH 3 faraTbMa
decision 3MiHHMMMH, 110 PO3IJIAIAI0THL BUPOOHUYY MOMKJIMBICTH 00'€KTa mMpoekTy. MeToau aHa-
Ji3y CTPYKTYp, IO YNPAaBJsSIIOTh, i MOBHOr0 BiAMiTHOT0 aHagizy mMOMUJIKH OYyJIH 3aCTOCOBaHi
JJIS1 TOTO, 1100 OUiHUTH 3MiHU HediHiliHoT QyHKIIIT - KpuTepill HA BecHsIHIiN XapakTepucTHIII.

Kiio4oBi cjioBa — JUCKOBA NPYKUHA, MOJIONTUMAJIBLHA KOHCTPYKILisi, oMTHMI3aIlisl.

The analysis concerning the influence of the geometrical deviations and construction
material features of the slotted conical disc spring upon the results of its parametrical
optimization has been presented in the work. Small variation of the function — criterion value
with deviations assures the correctness of the assumed nonlinear optimization model with many
decision variables considering the production possibility of the design object. The methods of
interval analysis and total differential analysis of the error have been applied in order to
evaluate the changes of the nonlinear function — criterion upon the spring characteristic.

Keywords — spring disk, polyoptimal construction, optimization.

Introduction

Analysis concerning the influence of geometrical deviations and material construction features of the
slotted conical disc spring upon the results of its parametrical optimization is the main object of this work.
In the considered case of searching the optimal construction features <Ci> with maximal constant force

20



