- якщо $t_{\mu} \ge t_{pee}$, то цей енергетичний роздільник дає змогу запобігти утворенню кристалогідратів під час дроселювання природного газу на регуляторі тиску;
- якщо $t_{\mu} \leq t_{pee}$, то частка нагрітого потоку зменшується на визначений крок і розрахунок повторюється для нової частки нагрітого потоку.

Висновок. За допомогою цієї методики розрахунку можна проектувати енергетичні роздільники, що використовуються для нагрівання природного газу, зокрема для нових та існуючих газорозподільчих станцій.

I. Коваль Р., Банахевич Ю., Балінський І. Енергоощадність у газотранспортних системах ДП "Львівтрансгаз": Зб. тез доповідей: ІІ Міжнародна наук.-практ. конференція "Управління енерговикористанням". – Львів, 3–6 червня 1997 р. – Львів. – 1997. – С. 85. 2. Мартынов А.В., Бродянский В.М. Что такое вихревая труба? – М., 1976. З. Меркулов А.П. Вихревой эффект и его применение в технике. – М., 1969. 4. Spahiu J., Cserveny J. Studiul unor parametri functionali al turbinatorului frigorific / Stud si cercetari energ. Acad.RPR. – 1961. – 11. – №3. 5. Савченко О., Балінський І. Енергетичне розділення стиснених газів // Ринок інсталяцій. – 2004. – №1. – С.15–16. 6. Kashyna O., Balinsky I. Experimental investigation of energy separation of the compressed gases // VII Vedecká konferencia s medzinárodnou účasťou. Kosicko-L'vovsko-Rzeszowska, 22–24 mája 2002: Zborník prednások. – Kosice (Slovakia), 2002. – S.125–128. 7. Кашина О., Балінський І. Ефективність енергетичного розділення стиснутих природного газу і повітря // Вісник НУ "Львівська політехніка" "Теплоенергетика. Інженерія довкілля. Автоматизація. " – 2001. – №432. – С.106 – 109. 8. Кашина О., Балінський І. Вологовміст природного газу при його дроселюванні на газорозподільчих станціях // VI Міжнародна наукова конференція "Актуальні проблеми будівництва та інженерії довкілля". – Львів – Кошице – Жешув, 12-15 вересня 2001 р.: Зб. матеріалів конференції. – Львів, 2001. – С.3–5.

УДК 532.5-1/-9.071.4:532.555.2:532.517.4:532.542.4

В. Орел

Національний університет "Львівська політехніка" кафедра гідравліки та сантехніки

ВПЛИВ ГЕОМЕТРІЇ РАПТОВОГО ЗВУЖЕННЯ КРУГЛОЇ ТРУБИ НА КОНФІГУРАЦІЮ ПОТОКУ В НЬОМУ

© Орел В., 2005

The change of pressure on sudden narrowing of a round pipe is better described by the square-law in the formula (9) is determined. The linear dependence of inclination of a vector of the average speed in section of entrance in sudden narrowing of a pipe (β) from the area of ratio of circular section tubes (*m*) is offered.

Постановка проблеми. Дослідження течій у трубах різних діаметрів є однією з актуальних завдань механіки. Особливий інтерес тут становить турбулізація течії в місцях локальних неоднорідностей труб.

Всупереч загальному принципу найменшого опору, відповідно до якого в природі переважно відбуваються різні процеси, при русі рідин у трубопроводах, навпаки, кожного разу встановлюється такий режим руху, за якого в усіх можливих варіантах виникає найбільший опір [1]. Так, у раптовому звуженні при переході труби від діаметра D до діаметра d (рис. 1) відбувається відрив транзитного струменя від стінок труби. Відрив турбулентного потоку погіршує робочі характеристики багатьох машин і технічних пристроїв [2].

труои зумовлені насамперед розширенням струменя, стисненого після входу з широкої труои у вузьку (переріз C-C), до повного перерізу вузької труби (переріз 3-3) [3, с. 151] (рис. 1), оскільки ці втрати є необоротними [4, с. 71]. Оборотні втрати напору при звуженні струменя до перерізу C-C для турбулентного потоку порівняно малі в зв'язку з тим, що пульсації швидкостей на ділянці звуження завжди зменшуються; крім того, довжина стисненої частини струменя становить приблизно 0,5*d* [5, с. 191].

Коефіцієнт раптового звуження труби ζ за великих чисел Рейнольдса (Re > 10⁴) для води можна визначити наближено за формулою Ідельчика [3, с. 151], яка краще відповідає дослідним даним при d/D < 0.5 [6, с. 42]:

$$\zeta = 0, 5 \cdot (l - m) , \tag{1}$$

де m – ступінь звуження потоку, $m = d^2/D^2$.

При d/D > 0,5 коефіцієнт раптового звуження труби ζ визначається за наближеною формулою Альтшуля [6, с. 42]

$$\zeta = \left(\frac{1}{\varepsilon} - 1\right)^2 , \qquad (2)$$

де ε – коефіцієнт стиснення струменя:

$$\varepsilon = 0.57 + \frac{0.043}{1.1 - m}$$
 (3)

На підставі обробки експериментальних даних різних дослідників Ідельчиком І.Є. одержано формулу для будь-якого співвідношення *d/D* [3, c.151]:

$$\zeta = 0.5 \cdot (1-m)^{3/4}$$
 (4)

Також було запропоновано формулу, яка збігається з експериментальними даними при m ≤ 0,433 [7]:

$$\zeta = A - \alpha_I \cdot m^2 \,, \tag{5}$$

де α_1 – коефіцієнт кінетичної енергії в перерізі 1–1 (рис. 1). Для повністю розвиненого турбулентного режиму руху рідини в трубопроводі прийнято A = 0,48; α_1 = 1,05 [7].

Коефіцієнт стиснення струменя $\varepsilon = \frac{\omega_c^2}{\omega_d^2}$, де ω_c , ω_d – площа струменя відповідно в перерізі

C-C та в трубі діаметром d (рис. 1) є функцією ступеня звуження потоку m. Класичні значення Вайсбаха для коефіцієнта ε [4, с. 72] наведено в табл.1.

Таблиця 1

Залежність $\varepsilon = f(m)$ за даними Вайсбаха

Ступінь т	0	0,2	0,4	0,6	0,8	1,0
Коефіцієнт є	0,617	0,632	0,658	0,712	0,813	1,0

У першому наближенні залежність $\varepsilon = f(m)$ можна подати так [8]:

 $m=2\varepsilon-1$.

(6)

(7)

Порівняння формул (3) та (6) і даних табл. 1 показано на рис. 2. Дані табл. 1 описано залежністю

Рис. 2. Залежність $\varepsilon = f(m)$: 1 – за даними Вайсбаха (табл.1); 2 – за формулою (3); 3 – за формулою (6); 4 – дані табл. 5, побудовані за формулою (13)

Як бачимо з рис. 2, дані табл. 1 та формули (3) та (6) узгоджуються тільки в малому діапазоні зміни ступеня *m*: від 0,25 до 0,35.

Покращання гідродинамічних якостей місцевих опорів досягається шляхом ліквідації умов, які сприяють відриву потоку та утворенню відривних течій, тобто зменшення коефіцієнта місцевого опору [9]. У разі раптового розширення труби цього можна досягти, наприклад, закручуванням потоку на вході [10], введенням у потік полімерних додатків (для m > 0,7 за діаметрів, менших, ніж 50 мм) [11], чи здійсненням плавного переходу від широкого перерізу до вузького за допомогою колектора з криволінійними (рис. 3, а) або прямолінійними твірними (рис. 3, б) [3, с. 151].

а – заокругленої; б – зрізаної під кутом [3, с. 165]

Якщо необхідно змінити турбулентний потік, щоб зменшити опір, ми повинні проаналізувати і розрахувати, як на потік впливає, наприклад, форма границь [12, с. 9].

Завдання досліджень. Метою роботи є аналіз впливу стінок труб, які утворюють раптове звуження потоку, на коефіцієнт місцевого опору. Для досягнення поставленої мети необхідно провести аналіз існуючих літературних даних.

Залежність конфігурації потоку в раптовому звуженні круглої труби від його геометрії. Для достовірності подальших висновків порівняємо експериментальні значення коефіцієнтів раптового звуження труби для різних значень ступеня *m* [13, 14, 15] (табл. 2) з теоретичними формулами (1), (2), (4), (5), що відобразимо на рис. 4.

У табл. 2 також наведено розраховані за формулою (2) з використанням формул (3) та (6) і табл. 1 значення коефіцієнтів ζ для тих самих ступенів *m*. Як бачимо, найкраще збігається з експериментальними даними формула (3).

Таблиця 2

Ц/ ч	Ліам	етри	Співвіл-	Ступінь	Коефіцієнт (Лжерело	Коефіцієнт		IT
1/ 1	- Alam	чб	ношония	opprovide	поефіціені ў ,	Джерене	1	γ	
	TP.	y0,	ношення	звуження	визначении			ς,	
	М	Μ	d	потоку,	експери-		розрахований за формулою (2) та		
	D	d	\overline{D}	т	ментально		формулою (3)	табл. 1	формулою (6)
1	103,1	26.0	0,252	0,064	0,490		0,4036	0,3722	0,7739
2	51,0	20,0	0,510	0,259	0,420	[13]	0,3718	0,3318	0,3464
3	26,0	20,6	0,792	0,630	0,228	-	0,2618	0,1443	0,0515
4	—		0,334	0,112	0,444		0,3966	0,3668	0,6377
5	—	6.02	0,500	0,250	0,370	[14]	0,3737	0,3344	0,3600
6	—	0,02	0,673	0,453	0,300	[14]	0,3318	0,2570	0,1417
7	—		0,834	0,696	0,197	-	0,2618	0,1443	0,0321
8	33,42	5 72	0,171	0,029	0,480		0,4081	0,3741	0,8904
9	15,85	5,72	0,361	0,130	0,445	[15]	0,3942	0,3643	0,5928
10	33,42	25,01	0,748	0,560	0,300		0,2910	0,1856	0,0796

Значення коефіцієнта ζ для раптового звуження труби

Рис. 4. Залежність коефіцієнта раптового звуження труби ζ від ступеня звуження потоку т: 1 – за формулою (4); 2 – за формулою (1); 3 – за формулою (2); 4 – за формулою (5); 5 – дані [13]; 6 – дані [14]; 7 – дані [15]

У моделі [16] зміна діаметра струменя за раптового звуження труби

$$D(x) = d + (D - d) \cdot \left(1 - \frac{x}{x_R}\right)^{\kappa}$$
(8)

залежить від зміни тиску на раптовому звуженні труби

$$p(x) = p_D - (p_D - p_d) \cdot \left(\frac{x}{x_R}\right)^t , \qquad (9)$$

оскільки k = f(t).

У формулах (8) та (9): х – поточна координата; х_R – довжина ділянки повторного приєднання потоку; k, t – показники степеня; p_D, p_d – тиск у трубі діаметром D та d, відповідно.

Зміна тиску відбувається за квадратичним (t = 2) або кубічним (t = 3) законом [16]. Залежність

k = f(t) в діапазоні d/D = 0,7...0,3 [16] наведена в табл. 3.

Таблиця 3

Співвідношення d/D		0,7	0,6	0,5	0,4	0,3		
Показник степеня k	при t = 2	0,822	0,926	1,071	1,264	1,511		
	при t = 3	0,573	0,627	0,699	0,784	0,873		

Залежність k = f(t)

Ці дані (рис. 5) апроксимуються формулами:

 при t = 2 (коефіцієнт кореляції – 0,9864; середньоквадратичне відхилення – 0,045; ймовірність – 0,95 за критерієм Стьюдента)

$$k = (2,000 \pm 0,035) - (1,76 \pm 0,09) \cdot d/D;$$
(10)

 при t = 3 (коефіцієнт кореляції – 0,9693; середньоквадратичне відхилення – 0,030; ймовірність – 0,95 за критерієм Стьюдента)

$$k = (1,000 \pm 0,023) - (0,59 \pm 0,06) \cdot d/D.$$
Puc. 5. Залежність $k = f(t)$: 1 – при $t = 2$; 2 – при $t = 3$
(11)

На рис. 6 зображені графіки $D(x) = f\left(\frac{x}{x_R}\right)$. Як бачимо з цих графіків, чим більше *m*, тим криві зміни діаметра за зміни тиску за квадратичним (t = 2) та кубічним (t = 3) законами є

ближчими. Щоб визначити, який закон розподілу тиску найбільше відповідає раптовому звуженню труби,

використаємо поняття середнього діаметра за поверхнею струменя [16]:

$$\overline{\overline{D}} = \frac{d^2 + \frac{2d \cdot (D-d)}{k+1} + \frac{(D-d)^2}{2k+1}}{d + \frac{D-d}{k+1}} .$$
(12)

Для експериментальних даних табл. 2 так, як це робилося в [17], проведемо порівняння між діаметром \overline{D} та діаметром $\frac{1}{2}(D+d)$, що є середнім арифметичним між діаметрами D та d, які утворюють раптове звуження труби. Екстраполюючи формули (10) і (11) до 0 та 1, розрахунок зведемо в табл. 4.

З табл. 4 зрозуміло, що з похибкою, меншою від 4 %, формула (8) краще справджується тоді, коли показник степеня *k* визначений за формулою (10), тобто за квадратичного закону зміни тиску в моделі [16]. При цьому з ймовірністю 0,95 за критерієм Стьюдента

$$1/2 \cdot (d+D) = (1 \pm 0,016) \cdot \overline{D}$$
 (13)

при к за формулою (10) – 1; (11) – 2

Таблиця 4

Порівняння	значень ліаметрів	D	та 1/2•	D	+ d)
	one reno America bio	~				,

Ч/ч	Діаметри труб,		Діаметр		Діаметр	Похибка		
	MM		<u>—</u> , мм,		$\frac{1}{2}(D+d)$, MM	δ, %,		
	D	d	при <i>k</i> за формулою			при <i>k</i> за	формулою	
			(10)	(11)		(10)	(11)	
1	103,1	26.0	65,7	74,5	64,55	- 1,8	- 15,4	
2	51,0	20,0	39,3	41,8	38,5	-2,1	- 8,6	
3	26,0	20,6	24,0	24,2	23,3	- 3,0	- 3,9	
4			12,1	13,4	11,915	- 1,6	- 12,5	
5		6.02	9,2	9,8	9,02	-2,0	- 8,6	
6		0,02	7,8	8,0	7,58	-2,9	- 5,5	
7			7,0	7,1	6,80	-2,9	-4,4	
8	33,42	5 70	20,3	23,3	19,57	- 3,7	- 19,1	
9	15,85	5,72	10,9	12,1	10,785	- 1,1	- 12,2	
10	33,42	25,01	30,2	30,55	29,215	- 3,4	-4,6	

Під час проектування в таких галузях, як нафтова промисловість, машинобудування, архітектура, медицина тощо, також являє інтерес визначення кута β нахилу вектора осередненої швидкості в перерізі входу в трубу діаметром d (рис. 1).

Виходячи з формули (2) і взявши до уваги [18]

$$\varepsilon = \frac{1}{ctg(\beta) + 1} , \qquad (14)$$

матимемо

$$\beta = \operatorname{arc} \operatorname{ctg}\left(\sqrt{\zeta}\right). \tag{15}$$

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua

Для експериментальних даних табл. 2 визначаємо кут β за формулою (15). Розрахунок зведемо в табл. 5. Наприклад, для плоского каналу з раптовим звуженням потоку $\beta = 63,22^{\circ}$ [18]. Дані табл. 5 нанесено на рис. 2, з якого зрозуміло, що значення коефіцієнта є добре відповідають формулі (2).

У діапазоні зміни m = 0,029–0,696 (табл. 5, рис. 6) залежність β = f(m) можна виразити формулою (коефіцієнт кореляції – 0,977; середньоквадратичне відхилення – 0,247; ймовірність – 0,975 за критерієм Стьюдента):

$$\beta = (54,252 \pm 0,115) + (15,475 \pm 0,456) \cdot m \,. \tag{16}$$

На рис. 6 відносне значення похибки становить 2,5 %.

Таблиця 5

			e e			
Ч/ч	Діаметри труб,		Ступінь	Коефіцієнт	Кут	Коефіцієнт
	MM		звуження потоку	ζ	β,	стиснення струменя
	D	d	m	(експеримент)	град.	3
1	103,1	26.0	0,064	0,490	55,0	0,588
2	51,0	20,0	0,259	0,420	57,1	0,607
3	26,0	20,6	0,630	0,228	64,5	0,677
4	_		0,112	0,444	56,3	0,600
5	_	6.02	0,250	0,370	58,7	0,622
6	_	0,02	0,453	0,300	61,3	0,646
7	_		0,696	0,197	66,1	0,693
8	33,42	5 72	0,029	0,480	55,3	0,591
9	15,85	5,72	0,130	0,445	61,3	0,646
10	33,42	25,01	0,560	0,300	56,3	0,600

Висновок. Враховуючи модель [16], визначено, що зміна тиску на раптовому звуженні круглої труби краще описується квадратичним законом – показник степеня t = 2 у формулі (9). Запропоновано залежність кута β нахилу вектора осередненої швидкості в перерізі входу в раптове звуження від ступеня звуження потоку m – формула (16).

1. Егоров С.А. О принципе наименьшего сопротивления // Изв. вузов. Строит. и архитектура. – 1966. – № 6. – С.136–137. 2. Симпсон. Обзор некоторых явлений, возникающих при отрыве турбулентного потока // Теор. основы инж. расчетов: Тр. Амер. об-ва инж.-мех. – 1981. – Т.103, № 4. – С.131–149. 3. Идельчик И.Е. Справочник по гидравлическим сопротивлениям / Под ред. М.О. Штейнберга. – М., 1992. 4. Хьюит Дж., Холл-Тэйлор Н. Кольцевые двухфазные течения / Пер. с англ. – М., 1974. 5. Чугаев Р.Р. Гидравлика (Техническая механика жидкости): Учебник для вузов. – Л., 1982. 6. Справочник по гидравлике / Под ред. В.А. Большакова. – К., 1984. 7. Александров В.А. Уравнения движения несжимаемой жидкости, находящейся под суммарным воздействием консервативных и неконсервативных сил // Гидравл. приводы и элементы гидропневмоавтомат: Сб. научн. тр. – М., 1984. – С.109–117. 8. Носко С.В., Ковалев В.А. Методика гидродинамического расчета смазочных систем машиностроительного оборудования // Вестн. Нац. техн. ун-та "КПИ". Машиностроение. – 2002. – Вып. 42. Т.1. – С.93–94. 9. Анискин Ю.В. Влияние гидродинамики потока гидросмеси с мелкими частицами на износ местных сопротивлений типа внезапного расширения и сужения: Автореф. дис. ... канд. техн. наук: 05.278 / МИСИ. – М., 1972. – 14 с. 10. Харитонов В.П., Мочалин Е.В. Винтовой поток в каналах переменного сечения / НИ проект.конструкт. ин-т "Параметр". – Алчевск, 1994. – 10 с. – Деп. в ГНТБ Украины 17.10.94, № 2062-Ук94. 11. Чернюк В.В., Пицишин Б.С., Орел В.И., Жук В.М. Влияние добавок полиакриламида на потери напора во внезапных сужениях и расширениях труб // Инж.-физ. журн. – 2002. – Т.75, № 4. – С.115–122. 12. Молло-Кристенсен. Физика турбулентных течений // Ракетная техника и космонавтика. – 1971. – Т.9, № 7. – С.3–16. 13. Карев В.Н. Потери напора при внезапном сужении трубопровода и влияние местных сопротивлений на нарушение потока // Нефтяное хозяйство. – 1953. – № 8. – С.50–56. 14. Альтиуль А.Д., Везирян Р.Е. Исследование потерь напора при внезапном сужении трубопровода // Гидравлика однородных и неоднородных жидкостей: Сб. тр. МИСИ. – 1972. – № 89. – С.8–12. 15. Гнатів Р.М. Вплив добавок поліакриламіду на гідравлічні опори раптових звужень труб // Вісн. ЛПІ "Теплоенергетичні системи та пристрої". – 1992. – № 266. – С.27-32. 16. Иньков А.П., Ярхо С.А. К расчету местных коэффициентов гидравлического сопротивления // Науч. тр. Всес. заочн. машиностроит. ин-та. – 1973. – Вып.9. – С.167–176. 17. Орел В. Застосування формули зміни діаметра струменя рідини стосовно раптового розширення трубопроводу // Вісн. НУ "Львівська політехніка" "Теплоенергетика. Інженерія довкілля. Автоматизація". – 2001. – № 432. – С.11–14. 18. Гришин Ю.А. Метод расчета отрывного течения // Изв. вузов. Машиностроение. – 1983. – № 5. – С.79–84.

УДК 697.9:621.63:533.6:62-83

В. Венгльовський Національний університет "Львівська політехніка", кафедра теплогазопостачання і вентиляції

ЕНЕРГОЗАОЩАДЖЕННЯ У ВЕНТИЛЯТОРНИХ УСТАНОВКАХ З АСИНХРОННИМ ЕЛЕКТРОПРИВОДОМ

© Венгльовський В., 2005

In this article the technological requirements to performances of radial ventilators of systems hot-air heating, ventilation and conditioning are formulated. The analysis of existent methods throttling of radial ventilators is held.

Постановка проблеми. Витрати повітря і тиски в системах повітряного опалення, вентиляції та кондиціювання можуть залишатися як сталими, так і змінними. Для переміщення повітря використовують переважно радіальні та осьові вентилятори. Дотепер в існуючих приводах вентиляторів невеликої потужності використовувались електромотори з постійною або ступінчастозмінною частотою обертання. Вентилятори з такими приводами не повною мірою уможливлюють забезпечити технологічні параметри, підтримати потрібні тиски та витрати повітря, автоматизувати їх роботу.

За таких змін частоти обертання вентиляторів не завжди вдається досягти необхідних тисків і подач повітря; доводиться працювати при навантаженнях, нижчих за номінальні, часто вмикати і вимикати електромотори, а це призводить до перевитрат електроенергії і здорожчання систем.