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Abgtract. The restriction of the input set in the
form of a positive cone of the space <L, R> is not always
correct. For instance, while studying the organ of vision,
people are limited not only to positive, but also to
radiation with not very high energies, because excessively
intense can disturb the visua organ. In this particular
case, a convex body of alinear spaceis afairly acceptable
model of the set of input signals. Therefore, we consider
linear predicates with this domain of definition.

Key words: predicate modd, linear space,
predicate algebra, algebraic structure

INTRODUCTION

Theinput signals set of the object represents some
algebraic structure in many practical occasions. It is
explained by the fact that usualy there are certain
connections between the elements of this set, which can
be interpreted as algebraic operations. The correct
recognition of the corresponding structure largely
determines the adequacy of the mathematical moddl as a
whole. In scope of comparator identification, this
recognition must be done in the language of
experimentally verifiable properties of relations or
predicates. Without dwelling on the experimental part,
which goes beyond the scope of this paper, we give a
theoretical solution of this problem for an algebraic
structure such as a linear space over a certain field. This
structure is widespread in practice. The domain of
definition of operators, which will be studied in the
future, is a linear space in this paper. The basics of the
given topic are described in [1] and [2-6].

PREDICATE DATA MODEL

We will assume that the input signal processing
system realizes by its behavior four predicates defined on
the corresponding Cartesian power of the set M (input

signals): one one-placed predicate P(x), one two-placed
predicate E(x,y) and two three-placed predicates
S(x,v,2),T(x,y,z). Characters x,y, z indicate the input
signals of the system. The output signals of the system are
elements 0 and 1, which are the values of the listed
predicates.

The predicate P(x) forms classes of prototypes of
coefficients that can be adopted as the coefficients
themselves. The predicate E(x,y) is an equivalence
predicate given on M x M. It forms classes of prototypes
of vectors that can be taken as vectors themsdves. The
predicate S(x,y,z) is given on P3, it determines the
coefficients addition operation. The predicate T (x, y, z) is
given on P XM X M, it determines the operation of
multiplication of the coefficients by vector. Congder the
set M on which the relaions
E(,y),S(x,y,2),P(x), T(x,y,z), satisfying the
following conditions are given:

1) E(x,x)=1;

2) Ey)=1=E(y.x)=1

3) E(x,y)=1E(y,z)=1=>E(x,z) =1,

4) vx,y3z:S(x,y,z) =1,

5 S(x,y.2z)=1S(kx,y,z)=1=2E(z,z) =1,

6) S(x,y,z)=1Skx,y,z)=1=>E(x,x)=1,

7 SC,y.2z)=1Sky . 2)=1=2E(y,y)=1;

8) S(x,y,z2)=1>S(yxz)=1;

9 S(,y.2)=1E(z,z)=1=5kx,y,z) =1,

10) S(x,y,2) =1L E(,y)=1=>5(k,y,z) =1,

11) S(x,y,z2) =1L E(x,x)=1=S(x'y,z) =1,

12) S(x,v,z) =1,S(z,t,r) =1,S(y, t,p) =1=
= S(x,p,r) =1,

13) 30:S(x,y,x) = 1= E(y,0) =1;

14) vx3(—x):S(x,—x,y) =1=E(y,0) = 1;

15) P(0) =1,

16) P(x) =1,P(y)=1,S(x,y,z2) =1=P(z) =1,

17) P(x) =1, E(x,y)=1=P(y) =1;
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18) Vx,y3z:P(x) =1=>T(x,y,2) =1,
19) P(x) =0,P(y)=0=>T(x,y,z) =0;
20) P(x) =1, P(y)=1,T(x,y,z) =1= P(z) = 1;
21) T(x,y,z) =1=>T(x,y,z) =1,
22) T(x,y,z) =1, T(x,y,z) =1=E(z,z) = 1;
23) T(x,y,z2) =1,T(x,y,z2) =1=E(@,y) =1,
24) T(x,y,z) =1,T(x,y,z) =1=E(x,x) =1;
25) T(x,y,z) =1,T(z,z) =1=>T(x,y,z) =1,
26) T(x,y,z) =1,T(y,y)=1=>T(x,y.,z) =1;
27) T(x,y,z) =1, T(x,x)=1=>T(x,y,z) =1,
28) T(x,y,z) =1,P(x) =1,E(z,0)=1=E(x,0) =
29) E(z,0) =1,T(x,y,z) =1= E(z,0) = 1;
30) T(x,y,z) =1,P(x) =1,P(y) =1,T(z,p, 1) =
=1,T(y,p,t) =1= T(x,t,1r) =1,
31) T(x,y,z) =1,T(x,y,z) = 1,5(x,x" t) =
=1,P(x)=P(x)=1S(zz,p)=1=>T(,y,p) =1,
32) P(x) =1,T(x,y,2) =1,T(x,y'.z") =
=1,5(z,z,t) =1,
S,y p)=1=T(,pt)=1; 31:P(Q1)
=1,T(y,x,x) =1=>EQ,y) =1,
33) P(x)=13x1:T(x,xLy)=1=>EQ,y) =1;
34) 3{t:Hq vV x Iy ()}
a P(y(x) =1,
b. T(y;(x),t;,z) =1,5(z1,2,,11) =
= 1,S(Zl,Z3,T'2) = 11 1S(Zn—21anrn—1) =1
= E(x,1_1) = 1;
C. v{h;, (x)},, satisfying aand
b= E(J;y:;(x)) =1
35) P(x)=1,P(z)=1,5(x,y,2) =1=>P(y)=1

In this case the set M is divided into equivalence
classes by the relation E(x,y). The equivalence classes
will be denoted by A, B,C,R, T, ..., and all the set of
classes will be denoted by N. Then, asit is shown in the
work, E(x,y) can berepresented as

E(x,y) = D(Fx,Fy), where D is an equality
predicate given on N XN, and F:M - N (and Fx =

=Fy © E(x,y) =1).

Our a@m is to show that the given relations induce
the dructure of n -dimendgona linear space on
equivalence classes.

Statement 1. If we introduce an operation
(addition) on the equivalence classes by the rule A +

+B = Cifandonlyif vx,y,z:

x€A y€eEB, z€C(C, S(x,y,z)=1, then the
definition is correct and with respect to the operation N
forms an abelian group.

Proof. Firg¢ we show the correctness of the
definition. We arbitrarily select two equivalence classes
AB € N and two representatives of each dassx € A,y € B.
Then the property 4 implicates that there is z € C, for
which S(x,y,z) = 1. It meansthat A + B = C. Thus, the
operation is defined on any pair AB € N, moreover,
uniquely. LetC'# C,andA+B=C, A+B=C.

Then for an arbitrary z' € C' wehave S(x,y,z') =
= 1. Consdering that S(x,y,z) = 1, from property 5 we
gt E(z,z)=1orz € C.Hence, CNC'+ @ andsince
different classes have an empty intersection, then C € C'.
There is a contradiction. Now we show that the class Z

does not depend on the choice of x € A and y € B. L&t
x,x' €A and y,y’' € B. Then since S(x,y,z) =1 and
E(x',x) =1, then on the basis of property 11 we get
S(x',y,z) = 1. Further, taking into account property 10
and the equation E(y’,y) = 1, we get that S(x',y',z) =
= 1, but this also means that the addition operation does
not depend on the choice of the eements in the classes A
and B. Hence, the operation we introduced is correct.

We show that with respect to this operation N
forms an Abelian group.

Lt A+B=C. Thenforanyx € A,y e B,z€C,
S(x,y,z)=1. In this case, property 8 implies
S(x,y,z)=1or A+B=C. Thus, A+ B=B + A, the
operation is commutative.

It is dso associative. Let (A+B)+C =R, A+
+B =T, B+C=G. Then for the representatives of
classes the equdities S(x,y,t) =1,5(y,z,g9) =
=1,5(t,z,r) = 1. Taking into account property 12, we
obtain S(x,g,r) =1 It means A+G =R or A+ (B +
+C) =R,i.e

(A+B)+C =A+ (B +C(), then the operation is
associative. Consider property 13. It states that there is
0 eM such that for any x S(x,0,x) =1. Hence
A+ 0 =A (0 is an equivalence class, which O belongs
to). Moreover, O is unique, because if there is 0’ # 0,
then for y € 0’ we get S(x,y,z) = 1 and the second part
of the property 13 impliesE(y,0) = 1,i.e. 0’ = 0. Thus,
among N there is only one element O, which performs
therole of zero relative to this operation.

Finally, let us dwell on the existence of theinverse
element. We choose an arbitrary class A and its
representative x € A. Then by property 14 we have: there
is—x, for which S(x,—x,y) = 1 impliesE(y,0) = 1. Let
—x € —A, then A+ (—A) = B, where y € B, but with
E(y,0)=1wegetyeOorB =0.

Thus, A+ (—4) =0, and —A4 is unique. Since if
the equation is correct for some other class C, then
S(x,2,0)=1,5(x,—x,y) =1 and E(y,0) =1 Then
from property 9 we get S(x,—x,0) =1, and from
property 6 we get —E(—x,z)=1, iie —x€C or
—-A=C.

The statement has been proven.

Statement 2. The relation P(x), given on M,
determines its subset M', which is the union of
equivalence classes, and the set of classes included in M’
form a subgroup of the group of all classes with respect to
the addition operation.

Proof. To provethefirst part of the assertion of the
lemma, it is necessary to show that for any equivalence
class S the following is correct: A N M’ is either an empty
st or A. Let x € A, then if P(x) =1 and E(x,y) =1,
then property 17 implies P(y) =1, i.ee Ac M’ |If
P(x) =0, then for any y € A: P (y) = 0, since otherwise
if P(y) =1,E(x,y) =1, then from the property 17 we
obtain P(x) = 1. Itisacontradiction. Hence, if P(x) = 0,
then ANM'=@. Thus M ={x:P(x) =1} isa union
of eguivalence classes. We denote the set of these classes
by N'. Let us prove that N’ c N is a subgroup with
respect to the addition of classes. Let A,B € N' and
A+B=C, P(x)=1P@)=1 ad S(x,y,z)=1
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Property 16 asserts that P(z) = 1, consequently, z € N'.
Hence the operation of addition does not lead beyond N'.
Property 15, which dates that P(0) =1, means that
0 € N'. Now, let us show that the inverse element belongs
to N'. For thiswe consider A € N' and —A. Let —A does
not belongto N°.  Then P(—x) = 0,P(x) = 1,P(0) =
=1 and S(x,—x,0) = 1. But the last set of equalities
contradicts property 36. The assertion is proved.

Statement 3. If on equivalence classes belonging to
N’, we introduce the operation (multiplication) by the
rue AB=C, if and only if T(x,y,z) =1, for Vx € 4,
y € B,z € C, then this definition will be correct, and with
respect to these operations of addition and multiplication,
theequivalenceclasses N°  form afield.

Proof. The correctness of the definition of the
introduced operation is clarified as follows. From
properties 18 and 20 it follows that for any A, B € N' and
their arbitrary elements x € A and y € B there is z, for
which T(x,y,z) = 1 u P(z) = 1. Therefore, by virtue of
this definition of the operation of multiplication, thereisa
classC c N', for which AB=C and y € B. Let for some
z' the following equation is correct T(x,y,z") = 1, but
then the property 22 and the eguation T(x,y,z) =1
imply that E(z,z") =1, i.e. z’ € C. On the other hand, if
initially we chose x # x' € A and y # y' € B, then the
equalities E(x,x') = 1,E(y,y) =1, T(x,y,z) =1 and
the properties 26, 27 imply T(x',y’,z) = 1. Thus, the
class C does not depend on the origina choice of the
elements of the classes A and B. Consequently, the
definition of the operation of multiplication is correct. We
now show that with respect to the operations of addition
and multiplication, the set of classes N’ forms a field. It
follows from Statement 2 that N’ is an abdian addition
group. Let us prove that by multiplication N’ is also an
abelian group. Consider two arbitrary classes A,B € N’
and let AB € C. Thelast equation means that T(x, y,z) =
=1for x € A,y € B,z € C, but the property 21 in this
case implies T(x,y,z) =1, i.ee BA=C. Hence, the
operation is commutative. Property 30 implies its
associativity. Indeed, let us consider (AB)C and let
AB=R, RC=T and BC=P. Then representatives of
these classes will satisfy T(x,y,z) =1,T(r zt) =
=1,T(y,z p) =1, but according to the property 30 we
obtain T(x,p,t) = 1, i.e. (AB)C = A(BC).

Consider the property 33. It states that for vx €
Ac N' thereisx™ € A= ¢ N’ such that for any z € C,
T(x,x % y)=1andT(y,z z) = 1l aecorrect. If z€ M’,
the last two equations mean that (AA™!)C =C, and
AA~1 = B € N’ according to the property 20. Let us show
that A~ does not depend on the dass A. Indeed, letx; # x
and x, x; € A, then

E(x;,x)=1T(x,x1,y) =1,
1,T(y,z2z)=1T(,zz) =1

From these eguations, on the basis of the
properties 25, 27, 24 we get:

E(Y:}’1):1,T(x1:x_1:}’):1, T(xlrx_lry):
=1T(,xLy,)=1 ad E(@Lx =1 e
x71 €A™ Let A; = A, and A;A7 = B, and A,A3t =
B,. Then T(x;,x71y)) =1 T(x;,x3%y,)=1, and
taking into account the propety 32, we et

T(xlr xl_lryl) =

Vz:T (y1,2,2) = T(y,,2,z) = 1. Now we use property
24, then E(y,,y,) = 1, consequently B, = B,. Thus, for
any Ac N':AA™* = B does not depend on A and since
for Vz € N’ we have (AA™1)C = C, then AA™! performs
the role of one with respect to multiplication. Therefore,
in future we denote AA™1 = E.

Finally, we can conclude that with respect to the
operation of multiplication and addition of a set of classes
N’ form groups. These operations are a so interconnected
s0 that N’ is a fidd. We will show this. In fact, we
checked all the axioms of the field, except distributivity.
This axiom follows from property 31, since for arbitrary
classes A,A',B,C,C', T,P c N'" from the equalities
AB=C, AAB=C, A+A'=T, C =C = Pit follows for
their representatives that T(x,y,y) =T(x',y,z') =
=S(x,x',t) =S5(z,z',p) =1 and from 31 we have
T(t,y,p) =1, i.e. TB=P, consequently AB+ AB =
= (A+ A")B. Hence, digtributivity is satisfied, which
compl etes the proof of the assertion.

RESULTS AND DISCUSSIONS

We summarize the results of our assertions.
Specified relationships:

1) partition the origina set into equivalence
classes;

2) these equivalence classes form a set N, on
which the operation of addition is induced and with
respect to it the set N isagroup;

3) inthesat N, itispossibleto allocate a subset
N’ c N, on which the initial reations induce the
operation of multiplication, with respect to the operations
of multiplication and addition, the set N isafield.

Now we can formulate and prove the theorem,
which isthe goal of thisarticle.

Theorem 1. The set of equivalence classes N is a
finite-dimensiona linear space over a field N with the
operation of addition of vectors defined in Statement 1
and with the operation of multiplying a vector by an
element of the field defined in Statement 3.

Proof. To begin with, we note that the
multiplication operation induced by the relation T and
introduced for the elements of the field N’, similarly to
theway it is done in statement 3, can be correctly defined
for ements N, i.e. multiplying vectors by the e ements of
the fild N°. The proof of this fact repeats the
corresponding arguments in the proof of statement 3. Let
us proceed to the proof of the theorem.

We have already shown that with respect to the
operation of addition, the set of eements (hereinafter
referred to as their vectors, but denoted by capital letters,
since they are equivalence classes) N form agroup. There
is dso a fidd N and the operation of multiplying the
elements of the field by a vector. We show that this
operation hasthe following properties:

1) ifAeN',B,C € N, thenA(B + C) = AB+ AC;

2) if ALBEN',C € N, then (AB)C = A(BC);

3) ifA,BeN',C € N,then(4+ B)C = AC + BC;
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4) for O,FE € N' takesplace 0A = 0
andEA =AforanyA € N.

The first of the above properties follows from the
property of relations 32, similarly to the way it was done
in Statement 3. The third property and the second as a
matter of fact are proved by us in the Statement 3 when it
was a question of associativity and distributivity of the
operations of addition and multiplication. Let us consider
property 4. The fact that EA = A is implied from the
property 33 of reations. To justify the second equation,
we can use property 29, from which it follows. if we
consider 0A = C, then for the elements it isy’ € 0 and
S(z,—z,y) =1, consequently E(y',y)=1. Then
T' x,t)=1ie OA=T and E(y,t)=1 or T =0.
Hence, 04 = 0.

CONCLUSIONS

Thus, we have shown that the set N is a linear
space over the fidd N'. Let us prove its finite
dimensionality. It iswritten in property 35. It follows that
there are such dementst, € Ty,...,t, € T,, that for any
x €A thee ae unique y,(x) € B;(4),...,y,(4) €
€ B,(4), for which (on the right we will write what is
done for classes)

A) P(y;) =1, i.e B;(A) € N are the elements of
the field;

B) T(y;(x),t;,z;) =1, i.e
=2Z;; S(zy,z,,11) = 1,i.e. C; + C, = R, €c,;

S(n_2,Zp 1) =1, ie R, ,+C,=R,_; O
Ci+ Gt +C =Ry .

Then by property 35it follows that E(x, 1,,_;) = 1,
consequently, R,,_; = A.

Finally, we obtain the expansion by the basis
Ty,...,T,

B,(A)T; =

A= B, (A)T,+... +B,(A)T,.

The uniqueness of the classes B;(4) (unlike the
eements y;(x), which are mentioned in property 35)
follows from c) of property 35. The theorem is proved.
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