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Abstract. The restriction of the input set in the 

form of a positive cone of the space <L, R> is not always 
correct. For instance, while studying the organ of vision, 
people are limited not only to positive, but also to 
radiation with not very high energies, because excessively 
intense can disturb the visual organ. In this particular 
case, a convex body of a linear space is a fairly acceptable 
model of the set of input signals. Therefore, we consider 
linear predicates with this domain of definition. 
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INTRODUCTION 

The input signals set of the object represents some 
algebraic structure in many practical occasions. It is 
explained by the fact that usually there are certain 
connections between the elements of this set, which can 
be interpreted as algebraic operations. The correct 
recognition of the corresponding structure largely 
determines the adequacy of the mathematical model as a 
whole. In scope of comparator identification, this 
recognition must be done in the language of 
experimentally verifiable properties of relations or 
predicates. Without dwelling on the experimental part, 
which goes beyond the scope of this paper, we give a 
theoretical solution of this problem for an algebraic 
structure such as a linear space over a certain field. This 
structure is widespread in practice. The domain of 
definition of operators, which will be studied in the 
future, is a linear space in this paper. The basics of the 
given topic are described in [1] and [2–6]. 

PREDICATE DATA MODEL 

We will assume that the input signal processing 
system realizes by its behavior four predicates defined on 
the corresponding Cartesian power of the set   (input 

signals): one one-placed predicate  ( ), one two-placed 
predicate  ( ,  ) and two three-placed predicates  ( , ,  ), ( , ,  ). Characters  , ,   indicate the input 
signals of the system. The output signals of the system are 
elements 0 and 1, which are the values of the listed 
predicates. 

The predicate  ( ) forms classes of prototypes of 
coefficients that can be adopted as the coefficients 
themselves. The predicate  ( , ) is an equivalence 
predicate given on  × . It forms classes of prototypes 
of vectors that can be taken as vectors themselves. The 
predicate  ( , ,  ) is given on   , it determines the 
coefficients addition operation. The predicate  ( , ,  ) is 
given on  × × , it determines the operation of 
multiplication of the coefficients by vector. Consider the 
set   on which the relations  ( ,  ),  ( ,  ,  ), ( ), ( , ,  ), satisfying the 
following conditions are given: 
1)  ( ,  ) = 1; 
2)  ( ,  ) = 1 ⇒  ( , ) = 1; 
3)  ( ,  ) = 1, ( ,  ) = 1 ⇒  ( ,  ) = 1; 
4) ∀ , ∃  :  ( ,  ,  ) = 1; 
5)  ( , ,  ) = 1,  ( ,  ,  ′) = 1 ⇒  ( ,  ′) = 1; 
6)  ( , ,  ) = 1,  ( ′,  ,  ) = 1 ⇒  ( ,  ′) = 1; 
7)  ( , ,  ) = 1,  ( ,  ′,  ) = 1 ⇒  ( ,  ′) = 1; 
8)  ( , ,  ) = 1 ⇒  ( , ,  ) = 1; 
9)  ( , ,  ) = 1, ( ,  ′) = 1 ⇒  ( , ,  ′) = 1; 
10)  ( , ,  ) = 1, ( , ′) = 1 ⇒  ( , ′,  ) = 1; 
11)  ( , ,  ) = 1, ( , ′) = 1 ⇒  ( ′ , ,  ) = 1; 
12)  ( , ,  ) = 1,  ( ,  ,  ) = 1,  ( ,  ,  ) = 1 ⇒         ⇒  ( , ,  ) = 1; 
13) ∃0 :  ( , ,  ) = 1 ⇒  ( ,  ) = 1; 
14) ∀ ∃(− ) :  ( ,− , ) = 1 ⇒  ( , 0) = 1; 
15)  (0) = 1; 
16)  ( ) = 1, ( ) = 1, ( , ,  ) = 1 ⇒  ( ) = 1; 
17)  ( ) = 1, ( ,  ) = 1 ⇒  ( ) = 1; 
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18) ∀ , ∃  : ( ) = 1 ⇒  ( , ,  ) = 1; 
19)  ( ) = 0, ( ) = 0 ⇒  ( ,  ,  ) = 0; 
20)  ( ) = 1, ( ) = 1, ( ,  ,  ) = 1 ⇒  ( ) = 1; 
21)  ( ,  ,  ) = 1 ⇒  ( , ,  ) = 1; 
22)  ( ,  ,  ) = 1, ( , ,  ′) = 1 ⇒  ( ,  ′) = 1; 
23)  ( ,  ,  ) = 1, ( , ′,  ) = 1 ⇒  ( , ′) = 1; 
24)  ( ,  ,  ) = 1, ( ′ ,  ,  ) = 1 ⇒  ( ,  ′) = 1; 
25)  ( ,  ,  ) = 1, ( ,  ′) = 1 ⇒  ( ,  ,  ′) = 1; 
26)  ( ,  ,  ) = 1, ( ,  ′) = 1 ⇒  ( , ′,  ) = 1; 
27)  ( ,  ,  ) = 1, ( , ′) = 1 ⇒  ( ′,  ,  ) = 1; 
28)  ( ,  ,  ) = 1, ( ) = 1, ( , 0) = 1 ⇒  ( , 0) =         = 1; 
29)  ( , 0) = 1, ( , ,  ) = 1 ⇒  ( , 0) = 1; 
30)  ( ,  ,  ) = 1, ( ) = 1, ( ) = 1, ( ,  ,  ) =         = 1, ( , ,  ) = 1 ⇒  ( ,  ,  ) = 1; 
31)  ( ,  ,  ) = 1, ( ′ ,  ,  ′) = 1, ( ,  ′,  ) = = 1, ( ) =  ( ′) = 1, ( ,  ′,  ) = 1 ⇒  ( , ,  ) = 1; 
32)  ( ) = 1, ( ,  ,  ) = 1, ( ,  ,   ) =    = 1, ( ,   ,  ) = 1,  ( ,  , ) = 1 ⇒  ( ,  ,  ) = 1 ; ∃1 : (1)= 1, ( , , ) = 1 ⇒  (1, ) = 1; 
33)  ( ) = 1 ∃   : ( ,   , ) = 1 ⇒  (1, ) = 1; 
34) ∃ {  }    :∀  ∃{  ( )}    : 
a.     ( ) = 1; 
b.  (  ( ),   ,   ) = 1, (  ,   ,   ) = = 1, (  ,   ,   ) = 1, … ,  (    ,   ,     ) = 1 ⇒  ( ,     ) = 1; 
c. ∀{ℎ , ( )}    , satisfying a and  
b ⇒  (  ,  ( )) = 1. 
35)  ( ) = 1, ( ) = 1,  ( ,  ,  ) = 1 ⇒  ( ) = 1. 

In this case the set   is divided into equivalence 
classes by the relation  ( , ). The equivalence classes 
will be denoted by A, B, C, R,  ,  . . ., and all the set of 
classes will be denoted by  . Then, as it is shown in the 
work,  ( , ) can be represented as  ( , ) =  (  ,  ), where   is an equality 
predicate given on  × , and  : →   (and   = =   ⇔  ( , ) = 1). 

Our aim is to show that the given relations induce 
the structure of   -dimensional linear space on 
equivalence classes. 

Statement 1. If we introduce an operation 
(addition) on the equivalence classes by the rule   + +   =    if and only if ∀ ,  ,  :  ∈  ,   ∈  ,   ∈  ,   ( ,  ,  ) = 1, then the 
definition is correct and with respect to the operation   
forms an abelian group. 

Proof. First we show the correctness of the 
definition. We arbitrarily select two equivalence classes A,B ∈   and two representatives of each class  ∈  ,  ∈  . 
Then the property 4 implicates that there is  ∈  , for 
which  ( ,  ,  ) = 1. It means that  +  =  . Thus, the 
operation is defined on any pair A,B ∈  , moreover, 
uniquely. Let  ′ ≠  , and  +  =  ,   +  =  ′. 

Then for an arbitrary   ∈    we have  ( ,  ,   ) == 1. Considering that  ( ,  ,  ) = 1, from property 5 we 
get  ( ,   ) = 1 or   ∈  . Hence,    ∩   ≠ ∅ and since 
different classes have an empty intersection, then  ∈   . 
There is a contradiction. Now we show that the class   

does not depend on the choice of  ∈   and  ∈  . Let  ,   ∈   and  ,   ∈  . Then since  ( ,  ,  ) = 1 and  (  ,  ) = 1, then on the basis of property 11 we get  (  ,  ,  ) = 1. Further, taking into account property 10 
and the equation  (  , ) = 1, we get that  (  ,   ,  ) = = 1, but this also means that the addition operation does 
not depend on the choice of the elements in the classes   
and  . Hence, the operation we introduced is correct. 

We show that with respect to this operation   
forms an Abelian group. 

Let  +  =  . Then for any  ∈  , ∈  ,  ∈  ,  ( , ,  ) = 1. In this case, property 8 implies  ( , ,  ) = 1 or  +  =  . Thus,  +  =  +  , the 
operation is commutative. 

It is also associative. Let ( +  ) +  =  ,   ++ =  ,   +  =  . Then for the representatives of 
classes the equalities  ( ,  ,  ) = 1,  ( ,  , ) = = 1, ( ,  ,  ) = 1. Taking into account property 12, we 
obtain  ( , ,  ) = 1. It means  +  =   or  + ( ++ ) =  , i.e. ( +  ) +  =  + ( +  ), then the operation is 
associative. Consider property 13. It states that there is  ∈   such that for any    ( , , ) = 1. Hence,  +  =   (  is an equivalence class, which   belongs 
to). Moreover,   is unique, because if there is   ≠  , 
then for  ∈    we get  ( , ,  ) = 1 and the second part 
of the property 13 implies  ( , ) = 1, i.e.   =  . Thus, 
among   there is only one element   , which performs 
the role of zero relative to this operation. 

Finally, let us dwell on the existence of the inverse 
element. We choose an arbitrary class   and its 
representative  ∈  . Then by property 14 we have: there 
is − , for which  ( ,− , ) = 1 implies  ( , 0) = 1. Let − ∈ − , then  + (− ) =  , where  ∈  , but with  ( , 0) = 1 we get  ∈ 0 or  = 0.  

Thus,  + (− ) = 0, and −  is unique. Since if 
the equation is correct for some other class  , then  ( ,  , 0) = 1,  ( ,− ,  ) = 1 and  ( , 0) = 1. Then 
from property 9 we get  ( ,− , 0) = 1, and from 
property 6 we get − (− ,  ) = 1, i.e. − ∈   or − =  .  

The statement has been proven. 
Statement 2. The relation  ( ), given on  , 

determines its subset   , which is the union of 
equivalence classes, and the set of classes included in  ′ 
form a subgroup of the group of all classes with respect to 
the addition operation. 

Proof. To prove the first part of the assertion of the 
lemma, it is necessary to show that for any equivalence 
class   the following is correct:  ∩   is either an empty 
set or  . Let  ∈  , then if  ( ) = 1 and  ( ,  ) = 1, 
then property 17 implies  ( ) = 1, i.e.  ⊂   . If  ( ) = 0, then for any  ∈  : ( ) = 0, since otherwise 
if  ( ) = 1, ( , ) = 1, then from the property 17 we 
obtain  ( ) = 1. It is a contradiction. Hence, if  ( ) = 0, 
then  ∩  = ∅. Thus,  ` = { : ( ) = 1} is a union 
of equivalence classes. We denote the set of these classes 
by   . Let us prove that   ⊂   is a subgroup with 
respect to the addition of classes. Let  , ∈    and  +  = C,  ( ) = 1, ( ) = 1 and  ( , ,  ) = 1. 
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Property 16 asserts that  ( ) = 1, consequently,  ∈   . 
Hence the operation of addition does not lead beyond   . 
Property 15, which states that  (0) = 1, means that 0 ∈   . Now, let us show that the inverse element belongs 
to   . For this we consider  ∈    and − . Let −  does 
not belong to  `.  Then  (− ) = 0, ( ) = 1, (0) == 1 and  ( ,− , 0) = 1. But the last set of equalities 
contradicts property 36. The assertion is proved. 

Statement 3. If on equivalence classes belonging to   , we introduce the operation (multiplication) by the 
rule: AB =  , if and only if  ( ,  ,  ) = 1, for ∀ ∈  ,  ∈  ,  ∈  , then this definition will be correct, and with 
respect to these operations of addition and multiplication, 
the equivalence classes  `  form a field. 

Proof. The correctness of the definition of the 
introduced operation is clarified as follows. From 
properties 18 and 20 it follows that for any  , ∈    and 
their arbitrary elements  ∈   and  ∈   there is  , for 
which  ( , ,  ) = 1 и   ( ) = 1. Therefore, by virtue of 
this definition of the operation of multiplication, there is a 
class  ⊂   , for which AB =   and  ∈  . Let for some    the following equation is correct  ( ,  ,   ) = 1, but 
then the property 22 and the equation  ( ,  ,  ) = 1 
imply that  ( ,   ) = 1, i.e.   ∈  . On the other hand, if 
initially we chose  ≠   ∈   and  ≠   ∈  , then the 
equalities  ( ,   ) = 1, ( ,  ) = 1,  ( , ,  ) = 1 and 
the properties 26, 27 imply  (  ,   ,  ) = 1. Thus, the 
class C does not depend on the original choice of the 
elements of the classes A and B. Consequently, the 
definition of the operation of multiplication is correct. We 
now show that with respect to the operations of addition 
and multiplication, the set of classes    forms a field. It 
follows from Statement 2 that    is an abelian addition 
group. Let us prove that by multiplication    is also an 
abelian group. Consider two arbitrary classes  , ∈    
and let AB ∈  . The last equation means that  ( ,  ,  ) == 1 for  ∈  , ∈  ,  ∈  , but the property 21 in this 
case implies  ( , ,  ) = 1, i.e. BA =  . Hence, the 
operation is commutative. Property 30 implies its 
associativity. Indeed, let us consider (AB)  and let AB =  ,  RC =   and BC =  . Then representatives of 
these classes will satisfy  ( ,  ,  ) = 1, ( ,  ,  ) = = 1, ( ,  , ) = 1, but according to the property 30 we 
obtain  ( , ,  ) = 1, i.e. (AB) =  (BC). 

Consider the property 33. It states that for ∀ ∈ ⊂    there is    ∈    ⊂    such that for any  ∈  ,  ( ,    , ) = 1 and  ( ,  ,  ) = 1 are correct. If  ∈   , 
the last two equations mean that (AA  ) =  , and AA  =  ∈    according to the property 20. Let us show 
that     does not depend on the class А. Indeed, let  ≠   
and  ,   ∈  , then  (  , ) = 1, ( ,    , ) = 1,  (  ,    ,  ) =1, ( ,  ,  ) = 1,  (  ,  ,  ) = 1. 

From these equations, on the basis of the 
properties 25, 27, 24 we get:  ( ,   ) = 1, (  ,   , ) = 1,  (  ,   , ) = = 1, (  ,   ,  ) = 1 and  (    ,   ) = 1, i.e.     ∈    . Let   =    and       =    and       =  . Then  (  ,    ,  ) = 1,  (  ,    ,  ) = 1, and 
taking into account the property 32, we get 

∀ : (  , ,  ) =  (  , ,  ) = 1. Now we use property 
24, then  (  ,  ) = 1, consequently   =   . Thus, for 
any  ⊂   :    =   does not depend on А and since 
for ∀ ∈    we have (AA  ) =  , then AA   performs 
the role of one with respect to multiplication. Therefore, 
in future we denote AA  =  . 

Finally, we can conclude that with respect to the 
operation of multiplication and addition of a set of classes    form groups. These operations are also interconnected 
so that    is a field. We will show this. In fact, we 
checked all the axioms of the field, except distributivity. 
This axiom follows from property 31, since for arbitrary 
classes  ,  , , ,  , , ⊂    from the equalities AB =  ,     =  ,   +   =  ,   =  =  it follows for 
their representatives that  ( ,  , ) =  (  , ,   ) = =  ( ,   ,  ) =  ( ,   , ) = 1 and from 31 we have  ( ,  , ) = 1, i.e. TB =  , consequently AB +  ′ = = ( +  ′) . Hence, distributivity is satisfied, which 
completes the proof of the assertion. 

RESULTS AND DISCUSSIONS 

We summarize the results of our assertions. 
Specified relationships: 

1) partition the original set into equivalence 
classes; 

2) these equivalence classes form a set  , on 
which the operation of addition is induced and with 
respect to it the set   is a group; 

3) in the set  , it is possible to allocate a subset   ⊂  , on which the initial relations induce the 
operation of multiplication, with respect to the operations 
of multiplication and addition, the set  ′ is a field.  

Now we can formulate and prove the theorem, 
which is the goal of this article. 

Theorem 1. The set of equivalence classes   is a 
finite-dimensional linear space over a field  ′ with the 
operation of addition of vectors defined in Statement 1 
and with the operation of multiplying a vector by an 
element of the field defined in Statement 3. 

Proof. To begin with, we note that the 
multiplication operation induced by the relation   and 
introduced for the elements of the field   , similarly to 
the way it is done in statement 3, can be correctly defined 
for elements  , i.e. multiplying vectors by the elements of 
the field  `. The proof of this fact repeats the 
corresponding arguments in the proof of statement 3. Let 
us proceed to the proof of the theorem. 

We have already shown that with respect to the 
operation of addition, the set of elements (hereinafter 
referred to as their vectors, but denoted by capital letters, 
since they are equivalence classes)   form a group. There 
is also a field N and the operation of multiplying the 
elements of the field by a vector. We show that this 
operation has the following properties: 

1) if  ∈   , , ∈  , then  ( +  ) =  AB + AC; 
2) if  , ∈   , ∈  , then (AB) =   (BC); 
3) if  , ∈   , ∈  , then ( +  ) =  AC + BC; 
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4) for  ,  ∈    takes place   =    
and   =   for any  ∈  . 

The first of the above properties follows from the 
property of relations 32, similarly to the way it was done 
in Statement 3. The third property and the second as a 
matter of fact are proved by us in the Statement 3 when it 
was a question of associativity and distributivity of the 
operations of addition and multiplication. Let us consider 
property 4. The fact that   =   is implied from the 
property 33 of relations. To justify the second equation, 
we can use property 29, from which it follows: if we 
consider   =  , then for the elements it is   ∈   and  ( ,− ,  ) = 1, consequently  (  , ) = 1. Then  (  , ,  ) = 1, i.e.   =   and  ( ,  ) = 1 or  =  . 
Hence,   =  . 

CONCLUSIONS 

Thus, we have shown that the set   is a linear 
space over the field   . Let us prove its finite 
dimensionality. It is written in property 35. It follows that 
there are such elements   ∈   , . . . ,   ∈    that for any  ∈   there are unique   ( ) ∈   ( ), . . . ,  ( ) ∈∈   ( ), for which (on the right we will write what is 
done for classes)  )  (  ) = 1, i.e.   ( ) ∈   are the elements of 
the field;  )  (  ( ),   ,   ) = 1, i.e.   ( )  ==   ;   (  ,   ,   ) = 1, i.e.   +   =    etc.;  (    ,   ,     ) = 1, i.e.     +   =      or   +   +. . . +  =     . 

Then by property 35 it follows that  ( ,     ) = 1, 
consequently,     =  . 

Finally, we obtain the expansion by the basis   , . . . ,    =   ( )  +. . . +  ( )  . 

The uniqueness of the classes   ( ) (unlike the 
elements   ( ), which are mentioned in property 35) 
follows from c) of property 35. The theorem is proved. 
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