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Abstract: This article deals with the problem of 

synthesis of optimal by the minimal value of integral-
quadratic criterion dynamic systems, which are 
described by a model of equations in state variables. 

Based on finding the Lyapunov matrix and 
optimization equations, we propose a method for synthe-
sizing a set of feedback loop coefficients with respect to 
state variables that provide the minimal value of integral 
quadratic criteria when exposed to external coordinate  
disturbances. Finding the feedback loop coefficients with 
respect to state variables of the dynamic system using 
the proposed method extends the optimization methods 
of such systems by integral-quadratic criteria in a vector-
matrix description taking into account the action of 
external influences. The synthesis of the coefficients 
carried out on the example of a second-order dynamic 
system is also given. 

This method makes it possible to find the 
dependences of these coefficients on  the initial  
coordinates of the dynamic system, as well as to 
synthesize a functional converter whose influence in the 
feedback loops optimizes the given system 

Key words: regulator design, dynamic systems, 
disturbance, Bellman dynamic programming, initial 
conditions, the Lyapunov matrix. 

1. Introduction  
Analytical design of regulators is the method of syn-

thesis of the optimal regulator for a certain object with 
stated limitations and a given optimality criterion. For 
the most part, the problem of building an optimal system 
is mathematically formulated as a variational problem.  

Optimization of dynamic systems based on variation 
calculus methods can be performed by searching the 
system parameters that provide the minimum of a given 
functional of quality, i.e. it is an analytical design which 
consists in finding extremals as a solution to the Euler or 
Euler-Poisson equations and parameters of these extre-
mals [1].  

Another problem of optimization based on classical 
variation methods is to form the optimal control law, i.e. 
to synthesize a dynamic system regulator that implements 
the required control influences. From the perspective of 
classical variations calculus,  the  problem of choosing the 
law of control  ( )1 2; ; nu x x xu = …

r
that minimizes the 

functional ( )1 20 , ,, nJ F x x x dtu∞= …∫  of the dynamic 

system quality ( )1 2 ,, ,i i n udx dt f x x x= …  is a La-
grange variational problem  [1]. 

2. Synthesis of dynamic system regulators taking 
into account initial conditions 

In addition to classical methods of variation 
calculus, non-classical methods of variation calculus, in 
particular the Bellman dynamic programming method, 
should be recognized as a powerful tool for optimizing 
dynamic systems. It is applicable to both stationary and 
non-stationary systems, and at the same time it can be 
successfully applied to  the problem  of formulating the 
coordinate trajectories under determined or unde-
termined final state [2].  

Analytical design of regulators based on this method 
makes it possible to find control influences of the system 
described by the following vector-matrix equation: 

 
x x u
y x

 = +


=

A B
C

r r r&
r r , (1) 

where xr  is the n-dimensional vector of state variables; 
ur  denotes the m-dimensional vector of control influ-
ence; yr stands for the l-dimensional vector of output 
variables; A is the n×n-dimensional matrix of the 
system; В represents the n×m-dimensional matrix of 
control influences; С is the l×n matrix, where l<n, estab-
lishes a relation between the full state vector xr  and the 
l-dimensional vector of output variables yr . 

These control influences provide the minimal value 
of a system functioning criterion as an integral from 
quadratic form  

 1 20 minT TJ u ty u dy∞ += → ∫ R Rr r r r
, (2) 

and are found by solving the algebraic Riccati matrix 
equation. 

In the above quadratic criterion, the positively de-
termined matrices R1 and R2 have dimensions (l×l) and 
(m×m), respectively, and in some cases they are identity 
matrices. It is clear that for non-stationary systems, ma-
trices A, B and C are time dependent, so integral quad-
ratic criterion (2) has integration boundaries (t1 ÷ t2) and 
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the solution is sought  from the Riccati differential ma-
trix equation. 

Based on this system description and the quadratic 
quality functional, we have the following task – to find a 
control that transits the system from the initial state 

0( 0)x t x= =
r r

 to the final state ( ) 0x t = ∞ =
r  and provides 

the minimum of quadratic quality functional. Note that a 
quadratic functional is a functional of errors. So, if the 
balance state of the system is denoted by the vector 

d 0x =
r

, then any deviation of the vector xr  from the 
vector dxr  is an error. In this formulation of the problem, 
we are not interested in why and how the system has 
gone into the state 0xr . We should form a transition from 
the state 0xr  to the state 0)( =∞x

r
, ensuring the minimal 

value of the accepted functional of quality. This is im-
plemented by a linear quadratic regulator u x= Kr r

, ac-
cording to which the scheme in Fig. 1 should be closed 
by a feedback loop with a matrix K (dashed line) that 
will provide the optimal transition trajectory (Fig. 2) 
from the state 0xr  to the state 0)( =∞x

r
.  

 
Fig. 1. Block diagram of a closed-loop system. 

 
Fig. 2. Transition function from initial to final state. 

At the same time a linear stationary continuous con-
trolled dynamic system is generally described by an 
ordinary first-order vector linear differential equation [3] 

 1

2

x x u w
y x w

 = + +


= +

A B D
C D

r r r r&
r r r , (3) 

where wr  is the vector of disturbing or reference influ-
ences; 

D1 is the port-matrix for disturbing or reference influ-
ences; D2 is the matrix of output signal measurement 
inaccuracies. 

To begin with, we shall assume that D2 = 0. 
The direct use of the regulator synthesis methods based 
on the Bellman dynamic programming is impossible in 
this case because system (3) differs from the vector-
matrix equations of system (1). Therefore, this system 
(3) is proposed to be considered from the following point 
of view. Let us assume that D1 wr  is nothing but specific 
increments of the state variables at the initial moment 
t = 0, so at time  t = 0 the state variables have non-zero 
increments and under the action of a synthesized regula-
tor the system must transit to the state 0)( =∞x

r
, provid-

ing a minimal value of the accepted  quadratic criterion. 
Hence, system (3), being limited in the first stage by 
state variables optimization, will be optimized taking 
into account the initial conditions of systems that are 
described by state variable models.  

Also, in our case, we assume that the control ur  is a 
linear combination of state variables u x= Kr r

. Substitut-
ing in vector-matrix equation (1) the expression for vec-
tor ur , we shall  get:  

 x x u x x x= + = + =A B A BK Hr r r r r r& ,  

where = +H A BK  represents the matrix obtained by 
summing the matrices A and BK.  

Let us accept  the quality evaluation as a functional 
of  the state vector 

 0 minTJ tx xd∞= →∫
r r

.  

Now we shall assume that there is some function 
V=xTPx, the derivative of which is 

 TV x x= −
r r& ,  

that is 

 
( )T

T
d x x

x x
dt

= −
Pr r

r r
,  

where the matrix P must be determined.  
Choosing, without loss of generality, the matrix P sym-
metric and executing differentiation we shall obtain: 

 
( )T

T T
d x x

x x x x
dt

= +
P

P P
r r

r r r r& & .  

Substituting the value of xr&  in the expression ob-
tained will result in: 

 
( )

( )

( )

T
T T

T T T T T

d x x
x x x x

dt
x x x x x x

= + =

= + = +

P
H P PH

H P PH H P PH

r r
r r r r

r r r r r r
.  
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Now, if we assume that (HTP+PH) = -I, where I is 
the identity matrix, then the derivative of the function V 
takes the form above. Now by replacing in the quality 
functional expression the quadratic form Tx xr r

 by its 
value through the derivative of V and following integra-
tion, we shall obtain:  

 
( )

( ) ( )
00 0 0

T
T TJ

d x x
x x x x

t
dt

d
∞∞ −

 
 − =


=


=
 

∫
P

P P
r r

r r r r
. 

Here the need for system stability is taken into account, 
that is why P(∞) = 0 and xr  (∞) = 0. 

Thus, to synthesize a system that provides the mini-
mum of quadratic functional and takes into account the 
vector of initial conditions, it is necessary to consider the 
following two equations [4]: 

 
( ) ( )0 0 0T T

T T

J tx xdx x∞   
+ = −

= =∫ P P

H P H P I

r r r r
. (4) 

Therefore, the synthesis procedure is reduced to the 
following stages: 

– assuming the matrix H, which includes the matrix 
of feedback loop coefficients, known, we determine the 
matrix P which satisfies the second equation of system 
(4);  

– employing the known methods we minimize J, i.e. 
find the values of the feedback loop coefficients that 
provide the functional minimum. 

It is clear that if the initial conditions change, then 
each time it will be necessary to recalculate the coeffi-
cients with respect to the state variables that optimize the 
system. It is also necessary to think of a mechanism for 
correcting the feedback loop coefficients. Regarding the 
on-line recalculation of the feedback loop coefficients, 
we do not see any fundamental difficulties here, since 
the components of matrix P are found invariantly from 
the initial conditins as functions of the feedback loop 
coefficients in general, analytic form. Further, when we 
begin to formulate an expression for the quality func-
tional J, the initial conditions values take effect, that is, 
these initial conditions of state variables at a particular 
starting moment of time will only be the coefficients for 
the component of the matrix P, expressed through the 
feedback loop coefficients. For the numerical values of 
those coefficients to be found, it is required to substitute 
the component values of the matrix P and state variables 
increments in the expression of the functional and con-
duct its minimization using any of the known methods. 
As a result, we shall obtain 

 ( ) ( ) ( )( )1 20 , 0 , 0i i mk f x x x= … ,  

where m is the amount of state variables. 

3. Design of second-order system regulators  
The procedure of finding numerical values of feed-

back loop coefficients will be illustrated using a simple 
example. Let us have a system [4, 5]: 

 1 2

2

x x
x u

=
=

&
&

.  

Considering that the system control influence is 
found as a set of closed loops by state variables 

 1 1 2 2u k x k x= − − .  

For such a system its matrix A, as well as the control 
influences vector B will be as follows  

 
0 1 0

;
0 0 1

= =A B ,  

so                1 1

2 2

0 1 0
0 0 1

x x
u

x x
= ⋅ +

r
r

r ,  

then the matrix  

 
1 2 1 2

0 0 0 10 1
0 0 k k k k

= + = + =
− − − −

H A BK ,  

here                               

 1 2
1 2

0 00
1

k k
k k

= ⋅ − − =
− −

BK .  

For the sake of simplicity, choose k1 = 1 and find k2 
so that it might ensure the condition of quality evaluation 
minimization. 

So  
 T + = −H P HP I ,  
 and with k1 = 1 

 1T

2 2

0 0 1
1 1

k
k k

− −
= =

− −
H ,  

we can write the last equation as  

11 12 11 12

2 21 22 21 22 2

0 1 0 1 1 0
1 1 0 1

p p p p
k p p p p k

− −
⋅ + ⋅ =

− − − −
. 

According to the aforementioned expression it is 
easy to find  

 
2
2

12 21 22 11
2 2

21 1; ;
2 2

kp p p p
k k

+
= = = = .  

Now let us write an expression for integral quality 
evaluation as  

 
( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( )

111 12 2
1 2 1 11

221 22

2
1 2 12 1 2 21 2 22

0
0 0 0

0

0 0 0 0 0 .

xp p
J x x x p

xp p

x x p x x p x p

= ⋅ ⋅ = +

+ + +
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Substituting the found values of the matrix P com-
ponents in the expression for J, we shall get: 

 
( )( ) ( ) ( ) ( )2 2 2

1 2 2 1 2 2

2

0 2 2 0 0 2 0

2

x k k x x x
J

k

+ + +
= .  

Minimizing the quality evaluation by the value of k2, 
we shall obtain  

 
( )
( )

2
2

2 2
1

0
2 2

0
x

k
x

= + .  

Thus, way we have obtained a closed loop coeffi-
cient by a state variable as a function of initial conditions 
х1 and х2 in general form. 

Now, simply assuming x1(0) = x2(0) = 1, we can find 
the minimal value of a quality functional as J = 3. 

It is clear that this example only illustrates the syn-
thesis method and in complicated systems the process of 
finding feedback loop coefficients in general case, i.e. 
through the initial values of coordinates, requires the 
application of computer hardware to find the compo-
nents of the matrix P, and to minimize the functional J in 
the case of setting the larger amount of closed loop coef-
ficients. It is quite easy to show that when the matrices Н 
and НT take the form 

 1T

1 2 2

0 1 0
;

1
k

k k k
−

= =
− − −

H H ,  

the second equation of system (4) will be written as: 

1 11 12 11 12

2 21 22 21 22 1 2

0 0 1 1 0
1 0 1

k p p p p
k p p p p k k

− −
⋅ + ⋅ =

− − − −
 

and correspondingly  

1 21 1 22 1 12 11 2 12

11 2 21 12 2 22 1 22 21 2 22

1 0
0 1

k p k p k p p k p
p k p p k p k p p k p

− − − − −
+ =

− − − − −
. 

The equation for calculation of the matrix P compo-
nents through the coefficients k1 and k2 will be obtained 
as:  

 
1 21 1 12

11 2 21 1 22

12 2 22 21 2 22

1,
0,

1.

k p k p
p k p k p
p k p p k p

− − = −
− − =
− + − = −

.  

The solutions to these equations are as follows: 

 
2 2

1 1 2 1
12 21 22 11

1 1 2 1 2

11 ; ;
2 2 2

k k k kp p p p
k k k k k

+ + +
= = = = .  

Then, the quality functional is 

( ) ( ) ( )
( )

( )

( ) ( ) ( ) ( ) ( ) ( )

2 2
111 12 1 2

1 2
221 22 1 2

2 2 2 2 2
1 1 1 1 2 1 2 2 1 2

1 2

0 0
0 0

0 2

0 0 2 0 0 0 0
2

xp p x k
J x x

xp p k k

x k x k k x x x k x
k k

= ⋅ ⋅ = +

+ + +
+

. 

and the problem of finding, in general form, the follow-
ing functions ( ) ( )1 1 1 20 ; 0k f x x =    and 

( ) ( )2 2 1 20 ; 0k f x x =    requires the solution of the two 

minimization equations below: 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2 2 2 2
1 2 2 1 2 1 1 2

2
1 1 2

2 2 2 2 2 2 2
1 1 1 2 1 1 2 2

2
2 1 2

0 2 0 0 0 0
,

2

0 0 0 0 0

2

x k k x x x k xdJ
dk k k

x k x x k x k xdJ
dk k k

+ − +
=

 + + − + =

.(5) 

Found from those equations previously mentioned 
functions ( ) ( )1 1 1 20 ; 0k f x x =    and 

( ) ( )2 2 1 20 ; 0k f x x =    for the given matrices of the 

system A and B will depend on the initial conditions of 
state variables. 

From the first minimization equation of system (5) 
we have found the value of coefficient k2 as the absolute 
value of  

 
( )
( )

2
2 1

1

0
0

x
k k

x
= + .  

As for the solution of the second minimization equa-
tion of the same system (5), to obtain it in the general 
form as a simple function of the initial conditions is 
almost impossible because it is a complex nonlinear 
equation of connection between k1 and k2: 

 

( ) ( )
( )

( ) ( ) ( ) ( ) ( )
( )

2 2
1 2

1 2
1

2 22 2 2
1 2 1 2 1 1

2
1

0 0

2 0

0 0 4 0 0 0

2 0

x x
k

x

x x x x k x

x

 − + ± =

   ± + + +  

.(6) 

It can be solved only for specific numerical values of 
x1(0) and x2(0), that is, by numerical methods using spe-
cialized programs. Obviously, equation (6) is obtained 
by substituting the expression for k2 found from the first 
minimization equation.  

By the way, assuming that x1(0) = x2(0) = 1, as in the 
first example, then the absolute value of the coefficient 
k1 is found as k1 = 1. The difference is that in the first 
example, we set the same value, and here we got it by 
synthesis. 

4. Analysis of the results obtained in the synthesis 
of regulators for the second-order system 

In order to check the results obtained, let us plot a 
3D surface of the quality functional for the selected 
object depending on the feedback loop coefficients under 
the initial conditions x1(0) = x2(0) = 1 (Fig. 3). For the 
given object, it is seen that under the same initial condi-
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tions, J acquires a minimal value with the same values of 
feedback loop coefficients. In this way we can build the 
dependences of the quality functional and its derivative 
on the feedback loop coefficients, which we assume to 
be equal to k (Fig. 4).  For this system, the quality func-
tional is asymptotically approximated to its minimal 
value 1, but the feedback loop coefficients should be 
calculated not only from the perspective of providing the 
functional minimum, but also taking into account the 
technical limitations of the system and its regulations. 

 
Fig. 3. The description of a macromodel object. 
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0.5

1

1.5

2

2.5

3

3.5

1.1

J k( )

k
J k( )( )d

d

k  
Fig. 4. Changes in quality variable  

and its differential during transition process. 

 
Fig. 5. Computer model in MATLAB/Simulink  

of the sample object. 

For a more detailed analysis a computer model of 
the selected object was constructed (Fig. 5) and studies 
of transients were conducted at various values of the 
feedback loop coefficients k1 and k2 (Fig. 6). As we can 
see, the above calculations and mathematical analysis 
make it possible to achieve the desired and practically 
realizable result. 

 
Fig. 6. Changes in quality variable during transition process in 

three variations of closed loop coefficients. 

Therefore, the next step is to develop a digital 
program that will enable the implementation of these 
procedures. The input elements of these programs should 
be the matrices of systems A and B, the initial conditions 
of state variables and the matrix of K – feedback loop 
coefficients by the state variables in the general form. 

From the examples considered above, it is clear that 
the actual minimum of the quality evaluation depends on 
the initial conditions and the type of quality criterion ac-
cepted as the basis of synthesis procedure. Using the illus-
trated methods, it is possible to perform a synthesis in-
volving the selection of several feedback loop values, and 
to solve a synthesis problem for higher-order systems. 
However, as already stated, to determine the matrix P and 
to solve the minimization equations 0idJ dk = , it is 
necessary to develop special computer programs, as well 
as methods of forming the feedback loop coefficients if, as 
a result of the analysis of the minimization equations, the 
realizable solution at least one of them does not exist, or 
the solution returns infinity.  

6. Conclusion  
The check of optimal systems synthesis has been 

performed on the basis of initial conditions under which 
the matrix of feedback loop coefficients is determined 
from the system optimization by the initial coordinate 
values, whereby the initial coordinate condition is the 
value resulted from this or that disturbance. 

This approach makes it possible to obtain 
dependencies of feedback loop coefficients of the 
dynamic optimized system on the initial values of system 
coordinates due to disturbances and, if necessary, to 
make 'on-line' adjustments of these coefficients. 
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АНАЛІТИЧНЕ КОНСТРУЮВАННЯ 
РЕГУЛЯТОРІВ ДИНАМІЧНИХ  
СИСТЕМ З ВРАХУВАННЯМ ДІЇ  
ЗБУРЮВАЛЬНИХ ФАКТОРІВ  
Орест Лозинський, Володимир Мороз,  
Роман Білецький, Юрій Білецький  

У цій статті розглянуто проблему синтезу оптималь-
них за мінімальним значенням інтегрально-квадратичного 
критерію динамічних систем, які описуються моделлю 
рівнянь у змінних стану. 

На основі знаходження матриці Ляпунова і рівнянь 
оптимізації, запропоновано метод синтезу набору  коефі-
цієнтів зворотних зв’язків за змінними стану, які забез-
печують мінімальне значення інтегрального квадратичного 
критерію при дії на систему зовнішніх координатних 
збурень. Знаходження коефіцієнтів зворотних зв’язків за 
змінними стану динамічної системи запропонованим 
способом розширює методи оптимізації таких систем за 
інтегрально-квадратичними критеріями при векторно-
матричному описі з урахуванням дії зовнішніх впливів. 
Наведено синтез цих коефіцієнтів на прикладі динамічної 
системи другого порядку. 

Цей метод дає змогу знаходити залежності цих 
коефіцієнтів від початкових значень координат динамічної 
системи, а також синтезувати функціональний перетво-
рювач, вплив якого в колах зворотних зв’язків оптимізує 
дану систему. 
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