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Abstract: This article deals with the problem of
synthesis of optimal by the minima value of integral-
guadratic criterion dynamic systems, which are
described by a model of equationsin Sate variables.

Based on finding the Lyapunov matrix and
optimization equations, we propose a method for synthe-
sizing a set of feedback loop coefficients with respect to
state variables that provide the minimal value of integral
guadratic criteria when exposed to external coordinate
disturbances. Finding the feedback 1oop coefficients with
respect to state variables of the dynamic system using
the proposed method extends the optimization methods
of such systems by integral-quadratic criteriain a vector-
matrix description taking into account the action of
externa influences. The synthesis of the coefficients
carried out on the example of a second-order dynamic
system is a'so given.

This method makes it possible to find the
dependences of these coefficients on  the initial
coordinates of the dynamic system, as well as to
synthesize a functional converter whose influence in the
feedback loops optimizesthe given system
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1. Introduction

Analytical design of regulatorsisthe method of syn-
thesis of the optimal regulator for a certain object with
stated limitations and a given optimality criterion. For
the most part, the problem of building an optima system
is mathematically formulated as a variational problem.

Optimization of dynamic systems based on variation
calculus methods can be performed by searching the
system parameters that provide the minimum of a given
functional of quality, i.e. it isan analytical design which
consistsin finding extremals as a solution to the Euler or
Euler-Poisson equations and parameters of these extre-
mals[1].

Another problem of optimization based on classca
variation methods is to form the optimal control law, i.e.
to synthesize a dynamic system regulator that implements
the required contral influences. From the perspective of
classcal variations calculus, the problem of choosing the

law of control T =u(X;X,;...X, ) that minimizes the

functional J = [ F (X, %,,...%,,u)dt of the dynamic

system quality dx /dt=f;(X,%,,...x,,u) is a La
grange variational problem [1].

2. Synthesis of dynamic system regulator staking
into account initial conditions

In addition to classical methods of variation
calculus, non-classical methods of variation calculus, in
particular the Bellman dynamic programming method,
should be recognized as a powerful tool for optimizing
dynamic systems. It is applicable to both stationary and
non-stationary systems, and at the same time it can be
successfully applied to the problem of formulating the
coordinate trgjectories under determined or unde-
termined final state [2].

Analytical design of regulators based on this method
makes it possible to find control influences of the system
described by the following vector-matrix equation:

: D)

where X isthe n-dimensional vector of state variables;
U denotes the mdimensiona vector of control influ-
ence; Ystands for the I-dimensiona vector of output

variables; A is the nxn-dimensional matrix of the
system; B represents the nxmrdimensional matrix of
control influences; C is the Ixn matrix, where I<n, estab-

lishes a relation between the full state vector X and the
[-dimensional vector of output variables Y .

These control influences provide the minimal value
of a system functioning criterion as an integral from
guadratic form

I=[[VRy+TRJdt > min, (2

and are found by solving the algebraic Riccati matrix
equation.

In the above quadratic criterion, the positively de-
termined matrices R; and R, have dimensions (IxI) and
(mxm), respectively, and in some cases they are identity
matrices. It is clear that for non-stationary systems, ma-
trices A, B and C are time dependent, so integra quad-
ratic criterion (2) has integration boundaries (t; + t,) and
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the solution is sought from the Riccati differential ma-
trix equation.

Based on this system description and the quadratic
quality functional, we have the following task —to find a
control that transits the system from the initid state
X(t = 0) = %, to thefinal state X(t =) =0 and provides
the minimum of quadratic quality functional. Note that a
guadratic functional is a functiona of errors. So, if the
balance state of the system is denoted by the vector
Xy =0, then any deviation of the vector X from the

vector X, isan error. In this formulation of the problem,
we are not interested in why and how the system has
goneinto the state X, . We should form a transition from
the state X, to the state X(c0) =0, ensuring the minimal

value of the accepted functional of quality. Thisisim-
plemented by a linear quadratic regulator U =KX, ac-
cording to which the scheme in Fig. 1 should be closed
by a feedback loop with a matrix K (dashed line) that
will provide the optimal trandtion trgjectory (Fig. 2)

from the state X, to the state X(0) =0.

Fig. 1. Block diagram of a closed-loop system.

Fig. 2. Trangition function frominitial to final state.

At the same time a linear stationary continuous con-
trolled dynamic system is generally described by an
ordinary first-order vector linear differential equation [3]

X = AX + B0 + D,W
{ ! (3)

y=CX+D,W

where W is the vector of disturbing or reference influ-
ences,

D, is the port-matrix for disturbing or reference influ-
ences, D, is the matrix of output signal measurement
inaccuracies.
To begin with, we shall assumethat D,= 0.

The direct use of the regulator synthesis methods based
on the Bellman dynamic programming is impossible in
this case because system (3) differs from the vector-
matrix equations of system (1). Therefore, this system
(3) isproposed to be considered from the following point
of view. Let us assume that D; W is nothing but specific
increments of the state variables at the initial moment
t =0, so at time t = 0 the state variables have non-zero
increments and under the action of a synthesized regula-
tor the system must trandt to the state X(e0) =0, provid-

ing aminimal value of the accepted quadratic criterion.
Hence, system (3), being limited in the first sage by
state variables optimization, will be optimized taking
into account the initial conditions of systems that are
described by state variable models.

Also, in our case, we assume that the control U isa
linear combination of state variables U = KX . Substitut-
ing in vector-matrix eguation (1) the expression for vec-
tor U, weshall get:

X = AX +Bii = AX + BKX = HX,

where H =|A +BK| represents the matrix obtained by

summing the matrices A and BK.
Let us accept the quality evaluation as a functional
of the state vector

J =]y X" %dt > min.

Now we shall assume that there is some function
V=x"Px, the derivative of which is

that is

where the matrix P must be determined.
Choosing, without loss of generality, the matrix P sym-
metric and executing differentiation we shall obtain:

d(>“<T P)“()
ot

Substituting the value of X in the expression ob-
tained will result in:

=X"PX+ X"PX.

d()?TPY()
dat
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Now, if we assume that (H'P+PH) = -I, where | is
the identity matrix, then the derivative of the function V
takes the form above. Now by replacing in the quality

functional expression the quadratic form X' % by its
value through the derivative of V and following integra-
tion, we shall obtain:

d(X"Px) .
— 7 =X

el . =% (0)PX(0).

1-|-

Here the need for system stability is taken into account,
that iswhy P(0) =0and X (e0) =0.

Thus, to synthesize a system that provides the mini-
mum of quadratic functional and takes into account the
vector of initial conditions, it is necessary to consider the
following two equations[4]:

3= ;[ XPx Jdt = X" (0)Px(0) |

H'P+HP=-

Therefore, the synthesis procedure is reduced to the
following stages:

— assuming the matrix H, which includes the matrix
of feedback loop coefficients, known, we determine the
matrix P which satisfies the second equation of system
(4);

— employing the known methods we minimize J, i.e.
find the values of the feedback loop coefficients that
provide the functional minimum.

It is clear that if the initial conditions change, then
each time it will be necessary to recalculate the coeffi-
cients with respect to the state variables that optimize the
system. It is also necessary to think of a mechanism for
correcting the feedback loop coefficients. Regarding the
on-line recalculation of the feedback loop coefficients,
we do not see any fundamental difficulties here, since
the components of matrix P are found invariantly from
the initial conditins as functions of the feedback loop
coefficients in general, analytic form. Further, when we
begin to formulate an expression for the quality func-
tional J, the initial conditions values take effect, that is,
these initial conditions of state variables at a particular
starting moment of time will only be the coefficients for
the component of the matrix P, expressed through the
feedback loop coefficients. For the numerical values of
those coefficients to be found, it isrequired to substitute
the component val ues of the matrix P and state variables
increments in the expression of the functional and con-
duct its minimization using any of the known methods.
Asaresult, we shall obtain

= 1,(5(0). % (0)... %,(0)).

where misthe amount of state variables.

(4)

3. Design of second-order system regulators

The procedure of finding numerical values of feed-
back loop coefficients will be illustrated using a simple
example. Let ushave asystem [4, 5]:

X =%
X, =U
Considering that the system control influence is
found as a set of closed loops by state variables
u=-kx —KX,.

For such a system its matrix A, as well as the control
influences vector B will be asfollows

X 0 1
0 i(lz -Xl+oU,
| [0 0 % [1
then the matrix
H = A+BK 0 l+ 0 0 0 1
= —+ = = ,
0 0 |-k -k [~k -k
here
0 0
BK =| ||-k —k,|= :
1 -k =k

For the sake of simplicity, choose k; = 1 and find k,
so that it might ensure the condition of quality evaluation
minimization.

So
H'P+HP=-1,
andwithk; =1
a0 K[_o -1
1 k| |1 k|’

we can write thelast equation as

0 -1
1 -k,

0 1
1 —k,

Pp P [Py Po -1 0]1
Por Poo| [P Po 0 -

According to the aforementioned expression it is
easy to find

+

11 K+2

pjz—p21—zv pzz—kzv Py oA,

Now let us write an expression for integral quality
evaluation as

o P

+%(0) %, (0) piz + %, (0) %, (0) Pay + X2 (0) P

3 =[%(0) 1ty =% ()Pt
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Subgtituting the found values of the matrix P com-
ponents in the expression for J, we shall get:

% (0)(KF +2)+2k%(0)%,(0) + 2 (0)
2k, '

Minimizing the quality evaluation by the value of k,
we shal obtain
%(0)

x(0)

Thus, way we have obtained a closed loop coeffi-
cient by a state variable asa function of initial conditions
x3and x,in genera form.

Now, simply assuming x;(0) = x»(0) = 1, we can find
the minimal value of a quality functiona asJ= 3.

It is clear that this example only illustrates the syn-
thesis method and in complicated systems the process of
finding feedback loop coefficients in genera case, i.e
through the initial values of coordinates, requires the
application of computer hardware to find the compo-
nents of the matrix P, and to minimizethe functiona J in
the case of setting the larger amount of closed |oop coef-
ficients. It is quite easy to show that when the matrices H
and H' take the form

k,=[2+2

H - 0 1 T=O -k,

_ki _k21 1 _kZ,
the second equation of system (4) will be written as:
0 —k1 Pp| (O 1] |-1 O
1 _kz p21 p22‘_k1 _kz_‘o _]‘
and correspondingly

WP | [KPe Pi—kops| |1 Oll_
Pu—KPn Po—KoPs |[KPn Pn-KpPyp [0 -

The equation for calculation of the matrix P compo-
nents through the coefficients k; and k, will be obtained
as.

—ki Py — K P =1,
P — Ko Py — ki P, =0,
Pro —KoPap + Py — Ky Py =-1.
The solutions to these equations are as follows:

_ 1 K+l K +K+k
P2 =P = k1 v Po= oAk, = ok,
Then, the quality functional is
%(0)
SRR
| ( ) p21 (0 2k1k

+><f(0)kf><f( 0)k+2%(0)%(0) + 5 (0)k +X5(0)
2k

and the problem of finding, in genera form, the follow-
k= fi[%(0)%(0)]  and

O)] requires the solution of the two

ing functions

k, = f,[ %, (0);

minimization equations bel ow:

@ _ %006 +26x(0)(0)- (06 (0

ok 2k, -
@ R(OK[£(0 40K (0
d, 25

Found from those equations previously mentioned
k= f,] %(0):%,(0)] and

O)] for the given matrices of the

functions

k, = f,[ %, (0);
system A and B will depend on the initia conditions of
state variables.

From the first minimization equation of system (5)
we have found the value of coefficient k, as the absolute
value of

Asfor the solution of the second minimization equa-
tion of the same system (5), to obtain it in the general
form as a simple function of the initial conditions is
almost impossible because it is a complex nonlinear
equation of connection between k; and k,:

_[e0 <]
2200 .
J_r\/[xf(O) + ><§(0)}2 +4x(0) % (0)+ klxl(o)]z
2¢(0)

It can be solved only for specific numerical values of
x1(0) and x,(0), that is, by numerica methods using spe-
cialized programs. Obvioudly, equation (6) is obtained
by substituting the expression for k, found from the first
minimization equation.

By the way, assuming that x;(0) = xx(0) = 1, asin the
first example, then the absolute value of the coefficient
ky is found as k; = 1. The difference is that in the first
example, we set the same value, and here we got it by
synthesis.

4. Analysis of theresults obtained in the synthesis
of regulatorsfor the second-or der system

In order to check the results obtained, let us plot a
3D surface of the quality functional for the sdlected
object depending on the feedback |oop coefficients under
the initial conditions x;(0) = x(0) = 1 (Fig. 3). For the
given object, it is seen that under the same initial condi-
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tions, J acquires aminima value with the same values of
feedback loop coefficients. In this way we can build the
dependences of the quality functional and its derivative
on the feedback loop coefficients, which we assume to
be equal to k (Fig. 4). For this system, the quality func-
tional is asymptotically approximated to its minimal
value 1, but the feedback loop coefficients should be
calculated not only from the perspective of providing the
functional minimum, but also taking into account the
technicd limitations of the system and itsregulations.

Fig. 3. The description of a macromodel object.
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Fig. 4. Changesin quality variable
and its differential during transition process.
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Fig. 5. Computer model in MATLAB/Smulink
of the sampl e object.

For a more detailed analysis a computer model of
the selected object was constructed (Fig. 5) and studies
of transients were conducted at various values of the
feedback loop coefficients k; and k; (Fig. 6). As we can
see, the above calculations and mathematical analysis
make it possible to achieve the desired and practicaly
realizable result.

Fig. 6. Changesin quality variable during transition processin
three variations of closed loop coefficients.

Therefore, the next step is to develop a digital
program that will enable the implementation of these
procedures. The input elements of these programs should
be the matrices of systems A and B, theinitia conditions
of state variables and the matrix of K — feedback 1oop
coefficients by the state variablesin the genera form.

From the examples consdered above, it is dear that
the actua minimum of the quality evaluation depends on
the initid conditions and the type of qudlity criterion ac-
cepted asthe basis of synthesis procedure. Using the illus-
trated methods, it is possble to perform a synthesis in-
volving the sdection of severd feedback loop values, and
to solve a synthesis problem for higher-order systems.
However, as dready stated, to determine the matrix P and
to solve the minimization equations dJ/dk; =0, it is
necessary to develop special computer programs, as well
as methods of forming the feedback 1oop coefficientsif, as
aresult of the analysis of the minimization equations, the
redizable solution at least one of them does not exig, or
the solution returnsinfinity.

6. Conclusion

The check of optimal systems synthesis has been
performed on the basis of initial conditions under which
the matrix of feedback loop coefficients is determined
from the system optimization by the initial coordinate
values, whereby the initial coordinate condition is the
value resulted from this or that disturbance.

This approach makes it possible to obtain
dependencies of feedback loop coefficients of the
dynamic optimized system on theinitial values of system
coordinates due to disturbances and, if necessary, to
make 'on-line adjustments of these coefficients.
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AHAJIITUYHE KOHCTPYIOBAHHA
PET'YJIATOPIB JTUHAMIYHUX
CHUCTEM 3 BPAXYBAHHSIM JIi

35YPIOBAJIBHUX ®AKTOPIB

Opect Jlo3uncekuit, Bonogumup Mopos,
Poman binenpkuit, FOpiit binenpkuii

VY wiif crarTi po3risiHYTO MpoOIeMy CHHTE3y ONTHMAllb-
HHX 32 MiHIMaJbHUM 3HAUCHHAM iHTETpallbHO-KBAJPATHYHOIO
KPUTEpil0 JUHAMIYHUX CHCTEM, SKi OIUCYIOTbCS MOIEIUIIO
PIBHSIHB Y 3MIHHUX CTaHy.

Ha ocHoBi 3HaxomkeHHs Marpuui JlsmyHoBa 1 piBHSHB
onTUMI3allii, 3aIPOIOHOBAHO METOJ CHHTE3y Habopy koedi-
LIEHTIB 3BOPOTHHX 3B'S3KIB 32 3MIHHMMH CTaHy, sKi 3a0e3-
MEYyIOTh MiHIMaJIbHE 3HAUCHHS IHTErPaJIbHOrO KBaJPaTHYHOTO
KpHUTEpilo HpH Ail Ha CHCTEMY 30BHIIIHIX KOOpAWHATHHX
30ypeHb. 3HAXOKEHHs Koe(illieHTiB 3BOPOTHHX 3B A3KiB 3a
3MIHHMMHM CTaHy [MHAMIYHOi CHCTEMH 3alpOIOHOBAHUM
Croco0OM PO3MIMPIOE METOAM ONTHMI3allii TaKMX CHUCTEM 3a
IHTerpajIbHO-KBAAPATUYHIUMH KPUTEPISIMH IIpU  BEKTOPHO-
MaTpPUYHOMY OIMCI 3 ypaxyBaHHSAM [iii 30BHIIIHIX BIUIMBIB.
HaBeneno cuHTe3 1ux Koe(illieHTIB HAa MPUKIAAl TUHAMIYHOL
CHCTEMH JPYroro Mopszky.

Leit merom mae 3MOry 3HAXOIUTH 3aJISKHOCTI IMX
KOe(IIIEHTIB BiJ] IOYaTKOBUX 3HAYCHb KOOPAMHAT JHHAMIYHOL
CHCTEeMH, a TAaKOX CHHTE3yBaTH (YHKLIOHAJIbHHUI IEpETBO-
proBad, BIUIUB SIKOT'O B KOJaX 3BOPOTHUX 3B SI3KiB ONTUMI3ye
JIaHy CHCTEMY.

Orest Lozynskyi — Honoured Sci-
entist of Ukraine, Professor, Dr. Sc. in

Engineering, professor of the De-

partment of Electromechatronics and
Computerized Electromechanical Sys-
tems at Lviv Polytechnic Nationa
University. Graduated from Lviv
Polytechnic Nationa University, De-
partment of Electric drive and Auto-
mation of Industrid Instdlations.
His research activities are directed
towards solving scientific problems and gpplied tasks in the
field of automation, synthesis, analysis and optimal control of
the modes of dynamic systems.

Volodymyr Moroz — Professor,
Dr. Sc. in Engineering, professor of
the  Department  of Electro-
mechatronics and Computerized Elec-
tromechanical Systems at Lviv Paly-
technic National University. Gradu-
ated from Lviv Polytechnic National
University, Department of Electric
Drive and Automation of Industrial
Installations. His research and teach-
ing interests are in the areas of control

theory, computer simulation of the electromechanica systems,
digital control systems.

Roman Biletskyi — Student of
master degree of Electromechanical
Automation Systems and Electric
Drive Engineering at Lviv Polytechnic
Nationa University. Hisresearchisin
the areas of control theory, digita
control systems and practical imple-
mentations of optimization theory.

Yurii Biletskyi — Ph. D. in Engi-
neering Sciences, senior lecturer of
the Department of Electromechatron-
ics and Computerized Electrome-
chanical Systems at Lviv Polytechnic
Nationa University. Graduated from
Lviv Polytechnic National University,
Department of Electric Drive and
Automation of Industrial Installations.
His research and teaching interests are

in the areas of control theory, energy-based approaches of
control system synthesis, renewable energy sources.



