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Purpose. Parameters of Earth’s gravitationa field (C,,, S, ) are determinated by its figure and internal filling (mass

digtribution) that have a different influence on their formation. Using a well-known representation of the planet masses
distribution functions in the biorthogonal series form it is necessary to establish the Stokes constants C,,, S,, presentation

through the planet potential expansion coefficients b

. and liner combinations of ellipsoid geometric parameters. Based on
these formulas, it is the objective to investigate the possible influence of the inhomogeneity of the mass distribution function
of the Earth’sinterior and the representation of its shape with an elipsoid of rotation onto the values of the Stokes constants
and to explore the contribution of the radial digtribution of the Earth’s mass density to these constants. M ethodology. The
presentation of the planet's interior density function as a sum of the Legendre polynomials of three variables and the
approximation of its surface by an ellipsoid, as well as the representation of internd spherical functions in a rectangular

coordinate system, makes it possible to integrate expressions for Stokes constant C,,, S,, and obtain the relation between
these values of different orders and the linear combination of the planet potential expansion coefficients b, and geometric

parameters of ellipsoid a,B,y . Numerica data obtained from the derived relationships and the constructed graphs make it
possible to analyze the influence of the inhomogeneity of the mass's interior distribution of an ellipsoidal planet onto the
value of the Stokes constants and determine the intervals of maximum impact. Results. The general relations between the
expansion coefficients b, of the distribution function and the integrals from spherical functions on an ellipsoidal surface
that determine Stokes constants of a definite order are established. Herewith Stokes constants of n order are expressed in
terms of values C, ., S, . of lower orders. The presented cal culations give a procedure for the formation of Stokes constant
values, which clearly implies the conclusion about the small effect of the planet’s ellipsoidal form on the magnitude and
three-dimensionality of the Earth’s gravitational field as a result of the inhomogeneous of its interior masses distribution.
Also known dependence of the values C,,,, on the geometric compression of the biaxia Earth ellipsoid of constant density

m,0
is confirmed. Scientific novelty. The formulas for the relation between Stokes constants of different orders and linear
combinations of parameters a3,y are determined. The calculations and verification of the obtained relations for different

sets of potential expansion coefficients by, alow us to conclude that the three-dimensiona gravity field of the Earth
predominantly contributes to the Stokes constants, except C,,, and the constructed graphs determine its maximum

contribution to the mass digtribution in depth. Practical significance. The obtained dependences alow us to check the
approximation degree of the constructed density model of ellipsoidal planet by comparing Stokes constants which are
calculated using model and are obtained from the observations. In addition, it is possible to optimally reconcile the geometric
characteristics of the planet’s ellipsoid with its gravitationa field.

Key words: planet potential, masses distribution model, Stokes constant, €llipsoid, spherical function.

Introduction formation values C,,, S,x isan important element

Characterigtics of externa gravitational field with
seismology data are important e ements to study the
Earth’s internal dructure especiadly in researching
mass distribution function of the Earth. Since
difference from zero of Stokes constants is an
indicator of planet inhomogeneity and its three
dimensionality, the establishment area of possible
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in this study. It should be noted that such problem is
not considered for the first time. For example, in
papers (Tarakanov,1979; Vinnik, 1978) proposed to
place abnormal masses at a depth of 600-800 km with
interpretation of Stokes constants of 2-6™ order, and
for constants of 2—4™ order to shift the center of
occurrence down to 1000 km. Similar studies are
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proposed in (Ostach & Ageeva, 1982) and associated
with choosing the placement of point masses for the
best approximation of the potential. The theoretica
aspects of this problem are discussed in detail in the
monography (Antonov, Timoshkova & Kholshev-
nikov 1988). The continuation of these studies was
carried out in (Kholshevnikov & Shaidulin, 2015),
and a partial case is considered in (Kholshevnikov,
Milanov & Shaidulin, 2017). Further detailing of the
integrand function (specifically representing a sum of
the Legendre polynomials of three variables) will
allow us to represent formulas for Stokes constants as
alinear combination of coefficients by, and the geo-

metric parameters of the dlipsoid, and to investigate
their features.

Purpose

Using well-known a representation of the planet
masses distribution functions in the biorthogonal
series form it is necessary to establish the Stokes

constants C, ., S, presentation through the planet
potential expansion coefficients by, . Based on these

formulas, the objective is to investigate the possible
influence of the inhomogeneity of the mass
digtribution function of the Earth’'s interior and the
representation of its shape with an dlipsoid of
rotation onto the values of Stokes constants and to
explore the contribution of the radia distribution of
the Earth’ s mass density to these constants.

Methodol ogy

Stokes congtants of the planet o which figure is
limited by the surface Q, are completely determined
by the integral formula

. 1 .
Cn,k + Isn,k = Mag .[6(Unk +|Vnk)df,n,k = 0,1, 2, (1)

where M, a, — mass and equatoria radius of the planet
respectivdy; 6 — mass digtribution function of the pla-
net'sinterior; U, ,V, —internd spherica functions and
Unk+ivnk= Py (agqs_{'iﬂgqs)xlpxgxg : (2)
p+q+s=n
Anayss of the planet’ s gravitationa fidd parameters
(1) indicate the inhomogeneity of the masses distribution
and the deviation from spherical shape. If the body
surface is homogeneous in the three axial dlipsoid then
the Stokes congtants is C,,,, # 0 ( in the case two axia
dlipsoid just C,,,#0). This fact is one of the
conditions of the hydrogtatic Sate of the planet.
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Further the Earth's figure is taken as an dlipsoid

2T 2t
a8 a9 &

complement the piecewise continuous function of
mass distribution (%, %,,%;) as

2 2 2
T:{i+§+x_3£1} with semi axis a,a,,a;. We

5(P), P(x,%,x%)e0,

3
0, Perlo. @

5" (P) = {

In this interpretation, al the integral characteridtics

asociated with the masses digribution of the planet’s
interior stay unchanged, that is,

|8 (P)f(P)do =[5 (P)f(P)dr.

In thisregard, we consider the task: to analyze the
influence of a three-dimensiona dtructure of the
planet’s interior mass distribution and its figure
approximation by the elipsoid to the values of Stokes
constant (1).

Under the assumption (3), the piecewise
continuity of the investigated function allows it to be
presented as a series decomposition (Meshcheriakov,
1991)

5= %

N=m+n+k=

0 bmnkank +6 0 (P) ' (4)

where §°(p) — one of the generally accepted radial
(spherical) models of density, W, — generalized
Legendre polynomials of three variables (Bateman,

1953; Meshcheriakov, 1991), b, — expanson
coefficients, m+n+k =N and
Wk =
N 2 2 w2 O\
1 0 XX X3
= KoN Kl 2t 2t 2L
a'ajay 2" mintk! ox"ox00xg \ & a5 a3
(%)
IWmnk(sdT
B =———— (6)
.[Wmnkwmnkdf

For further research, it is convenient to use the
representation of the interna spherical functionsin a
rectangular coordinate system (Fys, Zazulisk &
Zagjats', 2004) using complex variables

Unk + iVnk =
7]
_ RR(n-K)!L 2 15207 + x5)"

Mal2X mo (n—k-—2m)i(k+m)!m!

(% +i%,)" =
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= 2

p+g+s=n

Subgtituting (4), (5) and (7) in (1) gives

- - n -
Cox HiSk = Cnp,L + 'quj( + %(Crtw,k +'Stw,k), (8)
t=

(@ ps +1B pgs) X X% - (")

where  C, .S constant;
Ciker Sk Coks Shik calculated
using the PREM model and the coefficients b, of
t order and

given Stokes

— Stokes constant,

n-k
_ RR(N—K)! b ot p?- [ } 1)Myge2m
C't"xk+|8:‘rk= k(rl n) tpqs m n(k PAaAyS DX (X1+ 2) (Xl Z)k T, (9
2‘Ma]  pia=s—t; 2' plg's! a"agagoxLoxJoxs| mo (n—k— 2m)'m'(k+m)l
RRO-K)! o 2 g oy
P iShk = 10
Cok HiShk sz n { (p )né i(n K 2m)'m'(k+m)l(X1+IX2) dr. (20)

Trangdtion to a generalized spherica coordinate

system using equality

and integrating give us the next formula where
a-Bp %, B

X =8 psSingcosi, a ae’y a,
X, =8,pSINISINA, (12)
Xg = 83 COSY,
cP Liskr _3RR(n k) k'5c O n+2d [%k} (_1)k(n_k_2m_1)!!k!n—k—2m 2mik-1 plx
k1S = X(n+ N {, (0)p P n+1)! 2 22™(n—k — 2m)!(k + m)! 5 ¢ p
i
Xy (—1)2(2m.+I$—I —1.)!!(.| —1)!!ij,2k (12)
i+j=I (m=i)litk—j)'j!

In particular, for constant density &, we obtain

3RR(n-k)!k!5, [7

m, n-k-2m 2mek
(_1 X

cP +isSP =
kIS 2X(n+3)115,

N (v

=0 22™(n—k—2m)!(k+m)! 1=0

it emak—1-* (13)

ivj= 1 m=i)l(k=j)j!

and for spheroid (o = az) respectively

p_3p_n 2 )™y 2
"0 e (n+3)! o (n— 2m)l(m)122™

i[n) (n l)”22 m e 1)m an(az)mzm
O¢

, (14)
I — " m
(n+3t m'OLE— )1(m)!23m22
2
or, finaly,
n
y
p _% (7/ _1)2 15
n0 — ’ ( )
8¢ (n+1)(n+3)
where 6. —average density.

-

This expression is a well-known relation between
Stokes constants and the geometric compression for a
homogeneous bhiaxial ellipsoidal planet (Cunnin-
gham,1970), and equality (13) determines the
contribution of the radial masses distribution and is
one of the conditions of the planet hydrostatic state.
Stokes constants values, except C, ,, do not correlate

with the expression (15), that means there is a
deviation of the Earth's state from a hydrostatically
equilibrium state.

We continue to study contribution of hetero-
geneity of the masses distribution function and the
planet's figure approximation by elipsoid to the value
of Stokes constants. Firstly, we note that three-
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dimensionality is determined by the presence of series
elements (4) in the expression (9), and indices t and

n affect Stokes constants formation. First of all, al
values in (9) are converted to zero if t>n (t-order
derivative of a polynomial of lower degree).
Therefore, in the sum (8), the decomposition of
function & in series (4) is limited to the coefficients
bogs UP tothe n degree. For the case n=t, the term

(9) isasfollows

ok + 1S =
. Y bWS(aneriBBQS)
— Ve

p+g+s=n 2"

1I(p2—1)np2dp =

3 n! .
= o By P s Ooxs (16)

n coh
or ok HiSk =

Crt-1,k+i3tw,k _ RR(n-k)!

n ,:n
Mok T1Vhk | 1 . t
= ¥ wjp” ‘*2((,)2 —1) )dp, a7)
p+g+s=n C 0

where

: n! :
n n __ < k k
Hpi + WV = 5c @n+3)! pw%&n(ap% +'ﬂpqs)bpqs :

Thus, the coefficients for the values of bpq
Stokes constants of n order are the same as in the
combinations of variables x, X,, X3 in the
corresponding internal spherical functions U, , V.,

which further alows us to determine their linear
combinations through given Stokes constants.

Let's analyze the Sructure of the termsin expression
(9) when t < n . For thiswe submit (9) asfollows:

s inthe

Bpgs ot

2 t
p -1 x
2“Mal t=pra+s2' plg!s! £ axlpaxfaxf( )

1
klj(pz —1)tpn7”2dp
0

(~D)™xE* 2kl 2mik
mo 22" mi(n—k —2m)i(m+k)! 120 2rsj= (M=r)Iri(k— )ttt

2 by [

T
(_1)2(i)172B] 2rmk—IXI2dT =

n-k
T} DMy (2m k) amek

(n—t+1)n

j

j -
D2()’ it

X

prars=t PIA!S! Mmoo 22M(m+k)!(n—k—2m—s)!! 1o

}I!(2m+k—l)!a2m*k"[}' (18)

2= (M=0)Iri(k = rjiE@m+k =1 - p)lid =gt

We can assume that equality (18) is a set of
expressions (9) of corresponding orders and quantities
o, B,y , which are surface integras over an dlipsoid
from internal spherical functions. The verification of
this hypothesis is based on concrete examples in the
paper (Fys, 1982). Given this, the expression (18) can
be written as follows:

t Hal
Crk +1Sk =

t! O
:WE(C" +1§) )y (O, t<n (19)

and, taking into account (8) and (16), we get
S (s +1Bs)Bogs =

p+q+s=n
Sc(2n+3)!! : 1l
= 2 IC, +iIS, — X2 (C +i . (20
P {nk Sw 5050( +iSk) |- (20)

The right-hand side of (20) is expressed in terms of
the given Stokes constants of n order. The value of

20

the sum is caculated using combinations of

coefficients by, which are calculated using Stokes

constants lower orders. Therefore, in the final result,
the right-hand side (20) isthe sum of Stokes constants
to n order inclusve, and is therefore similarly
constant with the right-hand side (8).

Equality (20) can be represented as follows

Cox +iS k=

10l . t s
:5—21{2(% +Iv5)Jun_t,sdQ}(p2—1) p"2dp (21)
c t=00_I.s Q
Expression (19) is a linear combination of coeffi-
cients b, and parameters «, 8,y . Thisis explained

by the fact that the derivatives of spherical functions
are the sum again of spherical functions of lower
orders. It is extremdy difficult to establish the genera
form of such dependence, since it requires laborious
and complex transformations, but thisis not necessary
for solving our problem, since due to the ambiguity of
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the potential representation, it is sufficient to establish
only some of the coefficients that ensure the equalities
(linear combinationsin (16)).

Firg of al, in al relaions (19), except for the

case of k=n, thereisaterm C 7, [u,,dQ (or after
Q

transformations (y2 —1)Crr,‘:22yk), which means there is
inconsistency between the fall in the values of the
Stokes constants of these orders and the power law.
The values C, .S, are obtained mainly due to the

inhomogeneity of the mass distribution, which is quite
expected, because for the spherica planet in (19) the

sum is absent, since everything [u,dr=0 or

Ju, dQ =0, except for thecase n=k =0.
Q

Thus, a short agorithm for the implementation of
the above methodol ogy is as follows:
1. We determine the coefficients by , B9y, by

bg; Of zero and first order by the given Stokes

constants.

2. We cadculate, usng second-order Stokes
congtants and formulas (16), one of the variants of the
coefficients by (p+q+s=2).

3. Using the aready known second order

coefficients b, we calculate the third order

coefficients according to (20).

4. The iterative process is continued with the
established order N.

5. At each step, using the already cal culated values

b we return to the definition of the coefficients of

pas !
the polynomials uf,,v., by which we further
construct graphs of integrand functions (21), and aso

A+d t A+2 t
caculate the sequences X C,,, X S tha
t=0 t=0

determine the Stokes constants C,,, S, by the
formula (20).

Results

According to this algorithm, we performed
calculations using one of the models of the Earth’s
gravitational field (EGM2008) and in Table 1 we

gave the values C,, S/ obtained by formula (20),
0, (n—Kk)—even,
1 (n-k)—odd.
graphs of the dependence of the mass digtribution

contribution (21) aong the radius (depth) in Stokes
constants (see Fig. 1.2) and analyzed the results.

where /”tz{ We constructed

Table 1
The values of given Stokes constants (model EGM 2008)
and calculated values for different orders

A t 242 t A+d t 2+6 i 248 t A+2 t A+4 t A+6 t 248 t

n k| Chg 2Ck | ZGuk | ZChx | Z G 2 Gk Shk > Sk > Sk k| Z Sk
’ t=0 t=0 t=0 t=0 t=0 t=0 t=0 t=0 t=0

12 3 4 5 6 7 8 9 10 11 12 13
0 |0 | 1.OE+00 | 1.0OE+00 | 0.0E+00 - - - - - - _ _
1 [0 | 0.0E+00 | 0.0E+00 | 0.0E+00 - - - | 0.0E+00 - - - -
1 (1 | 0.0E+00 | 0.0E+00 | 0.0E+00 - - - | 0.0E+00 - - - -
2 |0 | -1.1E-03 | -1.3E-03 | -1.1E-03 - - - | 0.0E+00 - - - -
2 |1 | -2.8E-10 | 0.0E+00 | -2.8E-10 - - - | 19E-09 | 1.9-09 - - -
2 |2 | 1.6E-06 | 0.0E+00 | 1.6E-06 - - - | -9.0E-07 | -9.0E-07 - - -
3|0 | 25E-06 | 0.0E+00 | 0.0E+00 | 2.5E-06 - — | 0.0E+00 | 0.0E+00 - - -
3 |1 | 22E-06 | 0.0E+00 | 0.0E+00 | 2.2E-06 - — | 2.7E-07 | 0.0E+00 | 2.7E-07 - -
3 |2 | 3.1E07 | 0.0E+00 | 0.0E+00 | 3.1E-07 - - | -21E-07 | 0.0E+00 | -2.1E-07 - -
3 |3 | 10E-07 | 0.0E+00 | 0.0E+00 | 1.0E-07 - — | 2.0E-07 | 0.0E+00 | 2.0E-07 - -
40| 16E-06 | 3.8E-06 | 2.7E-06 | 1.6E-06 - — | 0.0E+00 | 0.0E+00 - - -
4 |1 | 51E-07 | 0.0E+00 | 6.3E-13 | -5.1E-07 - — | -45E-07 | -4.2E-12 | -4.5E-07 - -
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Continuation of Table 1

1 3 4 5 6 7 8 9 10 11 12 13

4 7.8E-08 | 0.0E+00 | -1.2E-09 | 7.8E-08 - - | 15E-07 | 6.7E-10 | 1.5E-07 - -
4 5.9E-08 | 0.0E+00 | 0.0E+00 | 5.9E-08 - — | -1.2E-08 | 0.0E+00 | -1.2E-08 - -
4 -4.0E-09 | -2.2E-15 | -2.2E-15 | -4.0E-09 - — | 6.5E-09 | 0.0E+00 | 6.5E-09 - -
5 2.3E-07 | 0.0E+00 | 0.0E+00 | -1.5E-08 | 2.3E-07 — | 0.0E+00 | 0.0E+00 | 0.0E+00 | 0.0E+00 -
5 -5.4E-08 | 0.0E+00 | 0.0E+00 | -8.0E-09 | -5.4E-08 — | -8.1E-08 | 0.0E+00 | -9.8E-10 | -8.1E-08 -
5 1.1E-07 | 0.0E+00 | 0.0E+00 | -5.6E-10 | 1.1E-07 — | -5.2E-08 | 0.0E+00 | 3.9E-10 | -5.2E-08 -
5 -1.5E-08 | 0.0E+00 | 0.0E+00 | -6.1E-11 | -1.5E-08 — | -7.1E-09 | 0.0E+00 | -1.2E-10 | -7.1E-09 -
5 -2.3E-09 | 0.0E+00 | 0.0E+00 | 85E-21 | -2.3E-09 — | 3.9E-10 | 0.0E+00 | O.0E+00 | 3.9E-10 -
5 4.3E-10 | 0.0E+00 | O.0E+00 | -1.4E-21 | 4.3E-10 — | -1.6E-09 | 0.0E+00 | 8.2E-21 | -1.6E-09 -
6 -5.4E-07 | -1.4E-08 | -9.1E-09 | -7.4E-10 | -5.4E-07 — | 0.0E+00 | 0.0E+00 | 0.0E+00 | 0.0E+00 -
6 -6.0E-08 | 0.0E+00 | -1.9E-15 | 2.6E-09 | -6.0E-08 - | 21E-08 | 1.3E-14 | 23E-09 | 2.1E-08 -
6 6.1E-09 | 0.0E+00 | 2.1E-12 | -2.4E-10 | 6.1E-09 - | -47E-08 | -1.2E-12 | -4.6E-10 | -4.7E-08 -
6 1.2E-09 | 0.0E+00 | -8.7E-25 | -9.1E-11 | 1.2E-09 — | 19E-10 | -5.8E-24 | 19E-11 | 1.9E-10 -
6 -2.3E-11 | -3.6E-16 | -3.6E-16 | 2.1E-12 | -2.3E-11 — | -1.8E-09 | 0.0E+00 | -3.4E-12 | -1.8E-09 -
6 -2.2E-10 | 0.0E+00 | -1.1E-25 | -6.9E-22 | -2.2E-10 — | -43E-10 | -3.6E-25 | -4.2E-22 | -4.3E-10 -
6 22E-12 | 3.0E-17 | 3.0E-17 | 3.0E-17 | 2.2E-12 — | -5.5E-11 | -1.7E-22 | -4.0E-22 | -5.5E-11 -
7 3.5E-07 | 0.0E+00 | 0.0E+00 | 8.3E-11 | -2.2E-09 | 3.5E-07 | 0.0E+00 | 0.0E+00 | 0.0E+00 | 0.0E+00 | 0.0E+00
7 2.1E-07 | 0.0E+00 | 0.0E+00 | 3.1E-11 | 3.4E-10 | 2.1E-07 | 7.0E-08 | 0.0E+00 | 3.8E-12 | 5.4E-10 | 7.0E-08
7 3.3E-08 | 0.0E+00 | 0.0E+00 | 1.5E-12 | -4.7E-10 | 3.3E-08 | 9.3E-09 | 0.0E+00 | -9.9E-13 | 2.3E-10 | 9.3E-09
7 35E-09 | 0.0E+00 | 0.0E+00 | 9.5E-14 | 4.0E-11 | 35E-09 | -3.1E-09 | 0.0E+00 | 1.9E-13 | 1.9E-11 | -3.1E-09
7 -5.8E-10 | 0.0E+00 | 0.0E+00 | -1.5E-20 | 3.1E-12 | -5.8E-10 | -2.6E-10 | 0.0E+00 | 0.0E+00 | -5.2E-13 | -2.6E-10
7 5.9E-13 | 0.0E+00 | 0.0E+00 | 4.6E-22 | -1.9E-13 | 59E-13 | 6.3E-12 | 0.0E+00 | -3.1E-22 | 7.4E-13 | 6.3E-12
7 -25E-11 | 0.0E+00 | 0.0E+00 | 1.0E-22 | 1.0E-22 | -25E-11 | 1.1E-11 | 0.0E+00 | -2.8E-23 | -4.0E-23 | 1.1E-11
7 2.8E-14 | 0.0E+00 | 0.0E+00 | 9.3E-23 | 8.0E-23 | 28E-14 | 4.5E-13 | 0.0E+00 | 24E-22 | 24E-22 | 45E-13
8 2.0E-07 | 6.3E-11 | 3.8E-11 | -1.4E-11 | 59E-09 | 20E-07 | 0.0E+00 | 0.0E+00 | 0.0E+00 | 0.0E+00 | 0.0E+00
8 1.6E-08 | 0.0E+00 | 6.9E-18 | -1.2E-11 | 5.0E-10 | 1.6E-08 | 4.0E-08 | -4.6E-17 | -1L.1E-11 | -1.6E-10 | 4.0E-08
8 6.6E-09 | 1.7E-15 | -3.8E-15 | 8.2E-13 | -3.6E-11 | 6.6E-09 | 54E-09 | 3.2E-15 | 15E-12 | 27E-10 | 5.4E-09
8 -2.0E-10 | 0.0E+00 | 2.5E-24 | 2.0E-13 | -4.8E-12 | -2.0E-10 | -8.7E-10 | 1.8E-23 | -4.1E-14 | -7.0E-13 | -8.7E-10
8 -3.2E-10 | -1.4E-16 | -14E-16 | -29E-15 | 5.6E-14 | -3.2E-10 | 9.1E-11 | 3.2E-22 | 45E-15 | 4.2E-12 | 9.1E-11
8 -4.7E-12 | 0.0E+00 | 0.0E+00 | -1.4E-21 | 25E-13 | -4.7E-12 | 1.6E-11 | -28E-26 | 1.9E-22 | 51E-13 | 1.6E-11
8 -1.8E-12 | 1.0E-18 | 1.0E-18 | 1.0E-18 | -8.7E-16 | -1.8E-12 | 8.6E-12 | -3.3E-23 | -5.7E-23 | 2.2E-14 | 8.6E-12
8 3.4E-13 | 0.0E+00 | -6.5E-29 | 4.0E-23 | 4.6E-23 | 34E-13 | 3.8E-13 | 15E-26 | -1.0E-23 | -1.0E-23 | 3.8E-13
8 -16E-13 | -3.6E-19 | -3.6E-19 | -3.6E-19 | -3.6E-19 | -16E-13 | 1.5E-13 | 0.0E+00 | 1.6E-24 | 5.0E-24 | 15E-13
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a) C0—C2 b) Cao—Cas
©) Caor—Caa d) Cso—Css
€) Coo—Ces f) C0~Co7
9) Ceo—Cés

Fig. 1. Graphs of the dependence of the contribution
of mass distribution along a radius in the Stokes constants C,,,
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a) S-S b) Ss—Ss3
C) Su—Su d) SSs5
€) Seo—Ses f) Si—Sr
9) Ss—Ses

Fig. 2. Graphs of the dependence of the contribution of mass distribution
along aradius in the Stokes constants S,
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Given that the influence of the elipsoidal shape of
the planet is manifested in the values [u, dr , which

are multipliers in the sum (20), and the results of
calculations with Table 1, one can argue the
insignificant influence of dlipsoidalness on the
formation of the Stokes constant values. Indeed, the
total contribution effect of the computed constants

Cl, Stk (A<n) issmall and tangible except for

values C,,,C, . Therefore, we can conclude that the

values of the Stokes constants are formed mainly due
to the anisotropy of the planet mass distribution,
described by the elements of the sum (19) when t=n,

and deviations of the figure from the spherical shape
don’t significantly affect the formation of the values
of the Earth’ s gravitational field parameters.

Treating in rdation (21) the integrand function as
the average over the unit sphere value

1 1 #2n )
—[6(9,A,p)dQ2 = 6(9,4,p)singd9dA ,
5 30 hp)a0= = ] 5(3.0.p)

it is possible to construct its graphs (Fig. 1, 2), giving
a genera idea of the total density contribution along
theradius.

From these figures, it can be seen that the
maximum effect for the reduced range of Stokes
constants is reached mainly for reative radii
0.3<p<0.6 when the sign of the corresponding

Stokes constant is stored. Again, for the value of C,
its formation is redlized at p > 0.5 in the mantle of

the Earth. The vaue C,, gets its true value when
p >0.7, that is, in the upper mantle. Obvioudly, the

results obtained for the above method are connected,
first of al, with the extremums of the function

(pz—l)n p? a points p = ! .

V2n+1
Thus, the conducted study requires further deve-
lopments, primarily in the direction of establishing
general relations between the quantities that are
determined through the fixed Stokes constants, and
the geometric characteristics, represented as integrals
of spherica functions. However, the obtained results

allow usto draw some conclusions.

Conclusions

1. The genera relations between the expansion
coefficients b, of the masses distribution of the

planet’s interior and the integrals of spherica func-
tions on the elipsoida surface, which determine the
Stokes constants of a given order, are obtained.

2. The formation of the parameters of the pla-
net's external gravitational field is mainly influenced
by deviation from theradia distribution of the interior
planet’s masses.

3.  The value of lower-order Stokes constants is
included in the cumulative effect of the contribution
to the values of upper-order Stokes constants.

4. Thesmall contribution of the elipsoidal form
to lower-order Stokes constants values is due to

multipliers [u,dr, which are zero for a sphere,

while for a biaxial elipsoid, they are proportional to

n
(»*-1)2 (n=2mk=0).
5. The deviation of the decrease of the Stokes
constants C,,, S, from the potentia law can be

partially explained by the presence of the terms
n

(7/2—1)2 Cn_zlk_z,(yz— )2811_2’,(_2 for nk>2.

6. The construction of the dependence of the
contribution of the radid mass distribution of the
planet’s interior to the values of Stokes constants on
depth reveals an ambiguous interpretation. It can only
be stated that the values of the constants are mainly
formed within therelative radius 0.3< p <0.6.

7. For amore complete study, it is necessary to
derive formulas for the dependence of the Stokes
constants among themselves and on the geometric
characteristics of the planet, in particular, on the semi-
axes of the Earth’ s dllipsoid.

8. Taking into account the geometry (semiaxes)
and the parameters of the gravitationa field of the
planet smultaneously can give a more precise
agreement between them when imposing additiona
conditions, for example, the minimum deviation
between the calculated and the given potential of the
general Earth elipsoid.
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23 Kagenpa xaprorpadii Ta reonpocropoBoro monentoBanHs, Harionansauii yHiBepcutet “JIbBiBChKa HOITEXHIKA”

Byi. C. bannepu, 12, JIeBiB, 79013, YkpaiHa, ein. momra
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AOCJIJUKEHHA BIUIMBY HEOAHOPIJHOCTI PO3IIOALTY MAC HAJIP INTAHETH
EJIITICOIAAJIBHOI ®OPMU HA If CTOKCOBI TTOCTIMHI

Mera. Ilapametpu rpasitanitinoro nons 3emni (C,,, S,,) BU3HauaoThes ii (iryporo Ta BHYTPIlIHIM HANOBHEHHAM

(posmonisom Mac), siki HO-pi3HOMY BIUIMBAaIOTh Ha iX (opMyBanHs. Ilomarouu (yHKIiIO PO3HONiNYy Mac Haap IUIAHETH y
BUIVIII OiOPTOrOHANBHHX PSIIiB, BCTAHOBUMO 300pa)X€HHS CTOKCOBHMX mocriumx C,,, S,, uepe3 koedimientu b, .,

pO3KJIay MOTEHLialy IUIAHeTH Ta JIiHiHHI KoMOiHalii reoOMeTpHYHUX XapaKTepUCTHK einincoina. Ha OCHOBI orpumaHmx
(dbopMy1 BUBUMTH MOXJIMBHUI BIUIMB HEOAHOpinHOCTI GyHKIIT po3nozniny Mac Haap 3emii Ta nopaHHs ii ¢irypu emincoigom
o0epTaHHs Ha 3HAUCHHS BEJIMYMH CTOKCOBHX IOCTIHHMX Ta JOCHIIAWTH BKJIAJ pa/liallbHOrO PO3HOUTY I'YCTHHU Mac 3eMili y
3HA4YeHHS LUX nocTiiHux. Meroauka. TlonanHs GyHKUIT TyCTHHY Haap IUIAHETH Y BUIVIAI CyMH MHOrowieHiB Jlexxanapa
TPbOX 3MIHHHX 1 ampoKcHMallis il MOBEpXHi EJIICOIAOM, a TaKoX IPEJCTABICHHS BHYTDIIIHIX Ky/IbOBUX (YHKIIH y

TPAMOKYTHIH CHCTEMi KOOPIMHAT, POONATH MOXIIMBAM IHTETPYBaHHS BHMPAa3iB JUIS CTOKCOBHX mocTidimux C,., S, Ta

OTPUMAHHS CITiBBiIHOMIEHHS MK MK BETMYMHAMHU Pi3HUX TIOPS/IKIB 1 MiHiiHO KOMOiHaNier koeillienTis posknany by

MOTEHIlIaly IUIAHETH ¥ TEeOMETPUYHHMX IapaMerpiB emincoiga o,fB,y . YucnoBi naHi, OTpuMaHi 3a BHBEJICHUMH CIIiB-

BiJJHOIIICHHSIMH, 1 OOy 0BaHi rpadiky JaroTh MOXIIMBICTh MPOBECTH aHAJi3 BIUIMBY HEOIHOPIAHOCTI PO3MOILTY Mac Haap
IUIAHETH eJincoinanbHoi GOpMHU Ha 3HAUYGHHS CTOKCOBHMX ITOCTIHHMX Ta BM3HAUUTH IHTEPBAIM MaKCUMAJIbHOTO BIUIMBY.
PesyabTaTn. OTprMaHO 3arajibHi CIiBBiJHOMEHHS Mixk koedinienramu poskiany b, dyHkuii po3noniny ta iHTerpanamu

Bijl Ky/nbOBHX (yHKLIH 1O eJincoifanbHii MOBEpXHi, SKi BU3HAYAIOTh CTOKCOBI MOCTiiHI 3anaHoro nopsuky. IIpu npomy
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CTOKCOBI mocTiliHl ¥ -ro mopsiaky BUpakaroTecsa dyepes Besmunan C . , HIKYUX nopsakis. IlpoBeneni o0umciaeHHs
n,k k

JIAI0Th 3arajibHy KapTHHY (JOpMyBaHHs 3Ha4eHb CTOKCOBMX IOCTIMHMX, 3 SIKOi YITKO BHMIUIMBA€ BHCHOBOK IIPO HEBEIMKHI
BIUIMB €JIICOIAAJIBHOI (JOPMH IUTAHETH Ha IX BEIMYMHY Ta IPO TPUBHMIPHICTH IpaBiTallifHOrO MOt 3eMill K pe3ylbTaTy

HEOJIHOPI/THOT0 3a BCiMa KOOpAMHATAMHU po3noxiny Mac ii Haap. Ilinreep/pkena 3anexmnicts 3Hauens Bennunun Cyo o Bil
I€OMETPHYHOI0 CTUCHEHHS JIBOXOCHOBOI'O 3€MHOTI'0 elincoina nocriiHoi rycruan. Haykosa HoBu3Ha. Busnaueni Gpopmynu
3B’SI3Ky MiX CTOKCOBMMH IIOCTiIHHMMM DI3HMX HOpSIKIB Ta JiHIHHMMH KoMOiHaLisMM mapamerpiB enincoiza o, f,y .

ITpoBeneHi OGUMCIEHHS Ta NEpPEBIpKAa OTPUMAHMX CIIBBIAHOLICHs sl Pi3HMX HaGOpiB KoediuieHTis b po3Knagy

pas
MOTEHIialy Jal0Th MOXJIMBICTH 3pOOMTH BHCHOBOK IIPO NEPEBayKHUH BKJIAJ TPUBUMIPHOCTI rpaBiTaliiiHoOro noys 3emii B
3HAYEHHs CTOKCOBUX MOCTiHHMX, 3a BUHATKOM C,,, a noOynoBaHi rpadiky BH3HAYarOTh iHTEPBAIM 1i MAKCUMAaJbHOI'O
BKJIaJly B PO31oAia Mac 3a ruouHowo. Ipakrnyna 3Hauymicts. OTpyMaHi 3a1€XHOCTI O3BONSAIOTH NEPEBIPATH CTEIHB
HaOJIMKEHHS T00YI0BaHOI MOJIEIi TYCTHHH eJIIICOIAaNbHOI IUIAHETH [IJISIXOM ITOPiBHSHHS OOYHCIICHNX 32 HEIO Ta B3STHX 31
CIIOCTEPEIKEHb CTOKCOBUX MOCTIHHMX. KpiM 1bOro, 3'sIBISETHCS MOMJIUBICTD ONTHMAJIBHOIO Y3TOJDKCHHS I'€OMETPHYHUX
XapaKTepHUCTHK eJIIICOoi/a IUTaHeTH 3 T rpaBiTaliiHAM HOJIEM.
Kniouogi crnosa: moTeHIiaN IaHETH, MOZIEIIb PO3IOALTY Mac, CTOKCOBI ITOCTiHHI, €TIICOIz.
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