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Abstract. An analytical-numerical method to determine the 

one-dimensional stationary thermal state of simple geometry 
multilayer structures for arbitrary dependences of heat-conductivity 
factors on temperature is proposed (the multilayer bodies of 
thermosensitive materials, referred to one of the classical orthogonal 
coordinate systems ( , , )α β γ  are considered, the thermal state 
caused by thermal load is characterized by a one-dimensional 
stationary temperature field ( )t α ). 

The method is based on: 
• utilization of elements of generalized functions algebra;  
• approximation of temperature dependences of heat-

conductivity factors of materials by piecewise constant 
temperature functions – 
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the solution of the partially degenerate equation derived from 

the heat equation in accordance with generalized functions 
algebra, taking into account the perfect thermal contact of the 
layers; 1С , 2С  are the constants of integration, in the general 
case determined from the system of two nonlinear algebraic 
equations obtained from the boundary conditions; ( )kf α , iK , 

iQ  are the functions and constants, determined by the 
recurrence relations obtained in the work.  

Approbation of the methodology by studying the stationary 
thermal state of a two-layer cylinder is realized. The cases of 
existence of a closed-form analytic solutions for the nonlinear heat 
conduction problem are considered.  

Key words: multilayer structures, solids of simple geometry, 
steady thermal state, temperature-dependent heat conduction 
factors, generalized functions. 

INTRODUCTION 

A considerable part of the methods of prediction the 
parameters of the technological processes of manu-
facturing and operation of structure elements at high-
temperature heating is based on the concept of an 
effective heat source [1], whose parameters are 
thermophysical characteristics of materials, the charac-
teristics of the technological process of manufacturing or 
operation a structural element and its geometric structure 
and, of course, heating.  

In these methods it is assumed that the temperature 
field is a single independent characteristic, in terms of 
which all other are determined. Investigation in 
accordance with these methods is carried out in two steps: 
at the first step, the heat problem is formulated and 
solved, that is, the temperature field is determined, and at 
the second one – the temperature field is assumed to be 
known and the fast-moving processes that do not affect 
the temperature distribution are calculated. For example, 
the study of static or quasistatic thermoelastic behavior of 
solids is preceded by determination of their thermal state 
(temperature field) [2–9]. 
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ANALYSIS OF RECENT INVESTIGATIONS  
AND PUBLICATIONS 

Adequate determination of the thermal state of 
structural elements, including the layered ones, for high 
temperature heating is based on the model of 
thermosensitive body (the model takes into account the 
temperature dependence of the physical and mechanical 
characteristics of materials) [2, 3]. According to this 
model, the thermal state of the body is determined by 
solution of the nonlinear heat conduction problem.  

The papers [10–12] proposed the methods to 
determine the stationary temperature fields in layered 
bodies for linear, quadratic and cubic dependence of 
heat-conductivity factors of materials of layers on 
temperature. For an arbitrary number of layers these 
methods by Kirchhoff transformation [1] reduce the 
problem to the solution of one or a system of two 
nonlinear algebraic equations (according to the 
conditions of heat exchange), solution of which is 
recommended to be searched by numerical methods, by 
numerical methods, of successive approximations in 
particular. 

In this case, the choice of initial approximation and 
clearning out the existence and uniqueness of the 
solution requires additional investigation. An overview 
of works related to this theme can be found in the works 
[2–15]. 

OBJECTIVES 

The objective of this work is the development of a 
method of construction the analytical and numerical 
solutions for one-dimensional steady heat conduction 
problems of multilayer heat-sensitive bodies of simple 
geometry at high temperature heating.  

The method is based on the use of the apparatus of 
generalized functions and allows us to investigate the 
thermal state of the layered bodies, irrespective of the 
temperature dependences type of the thermophysical 
characteristics of the material of the layers. Its use also 
makes it possible to find out the existence and uniqueness 
of the solution for the nonlinear heat conduction problem. 

STATEMENT OF THE PROBLEM AND INITIAL 
EXPRESSIONS 

Consider the multilayer bodies of thermosensitive 
materials assigned to one of the classical orthogonal 
coordinate systems ( , ,α β γ ) (Cartesian – , ,x y z  
(Fig. 1, а); cylindrical – , ,r zϕ  (Fig. 1, b); spherical – 

, ,r ϕ θ  (Fig. 1, c)).  
The boundary surfaces of the bodies coincide with 

the coordinate surfaces ( ), , =i constα β γ η  ( 0,=i n ) 
(multilayer structures of simple geometry [2]), and the 
surfaces of conjugation of materials – with the coordinate 
surfaces = =i constα α  ( 1, 1= −i n ) on which the 
conditions of the perfect contact are satisfied. We believe 
that the thermal state due to the thermal load is 
characterized by a one-dimensional stationary 
temperature field ( )t α .  

 
a 

 
b 

 
c 

Fig. 1. Multilayer structures of simple geometry: 
a – Fragment of a multilayer plate; b – Fragment of a multilayer 
cylinder; c – Fragment of a multilayer ball 

 
A mathematical model of thermal behavior of such 

bodies, according to the theory of an inhomogeneous 
body [16, 17], is the nonlinear boundary-value problem of 
the steady heat conductivity, which consists in 
determining the temperature function t  by solving the 
heat equation 

( ) 1
( , ) ( )

−  ∂ ∂
= − ∂ ∂ 

k k
t t

tt wα α λ α α
α α

, (1) 
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which satisfies the conditions of perfect thermal contact 
on the surfaces of conjugation  
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and the boundary conditions that describe the external 
thermal load 

 ( ) ( )( ) 0, 0, + = = 
 

i

i i
dta t b t i n
d αα

.  (3) 

Here, for the case of: Cartesian coordinate system 
0,= =k xα , cylindrical – 1,= =k rα , spherical – 
2,= =k rα , the functions ( ), ( )i ia t b t  are chosen 

according to the method of heating, ( )tw α  is the power 
density of the internal heat sources and sinks, all 
derivatives are taken in the classical sense, and the 
temperature-coordinate dependence of the heat 
conductivity factor ( ),t tλ α  has the form [18–20] 
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where ( ) ( )i
t tλ is the temperature dependence of heat 

conductivity factor of the material of the i-th layer. 

MAIN RESULTS OF THE INVESTIGATIONS 

The basis of the method of analytical-numerical 
solution of the boundary-value problem (1)–(3) makes the 
approximation of the temperature dependences of the heat 
conductivity factors ( ) ( )i

t tλ  of the material of the layers 
by piecewise constant functions of the temperature in the 
form [13, 18, 20], 
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and introduction into consideration the function of the 
Kirchhoff function type 
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= Λ∑∫
t n

i
i

i
t N dϑ ξ α ξ , (6) 

where ( ) ( ) ( )1+ − += − − −i i iN S Sξ α α α α , 

0 1 1... −< < < <n nα α α α , ;p kt t    is the common 

temperature interval of determination ( ) ( )i
t tλ , ( 1,=i n ), 

the value of ( )Λ i
j  with the given accuracy corresponds to 

the value ( ) ( )i
t tλ  in the temperature range 1− < <j jt t t , 

0α , nα  are the coordinates of the structure's boundary 

surfaces; iα  ( )1, 1= −i n  are the conjugation (contact) 

coordinate surfaces of “i-th” and “і+1-th” layer, 
{ }( ) 1, ;0,+ − = > ≤i i iS ς ς ς ς ς ς . 

As a result, the problem of determining the 
stationary thermal state of a multilayer structure is 
reduced to the solution of the relation 
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by the solution of a partially degenerate equation 
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obtained from the heat equation (1) with the help of the 
generalized functions apparatus [16], where d dα  is the 

generalized derivative, d dα% %  is the classical derivative. 
Between ϑ  and t  according to the relation (6) there 

is a one-to-one correspondence, therefore 
 ( ) ( )+ +− = −i iS t t S ϑ ϑ , (9) 
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Where from we obtain 
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On the surfaces of conjugation iα , the perfect 
thermal contact conditions (2) are satisfied, therefore 
having taken into account (9), (10) we can assert the 
validity of relations 
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basing ourselves on which we obtain 
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where 
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As a result, the solution of equation (8) reads: 
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from (16) the recurrence relations to determine 
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jK j%  are obtained 
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as a result, the expression (16) for ϑ  takes the form  
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In the general case, the values of constants of 
integration 1С , 2С  are determined from the system of two 
nonlinear algebraic equations obtained by substituting 
expression (11) into boundary conditions (3), which 
describe the heat exchange of the structure with the 
environment (external thermal load). Note that in the case 
of specifying on one of the boundary surfaces 
( = iα α , 0,=i n ) the heat exchange conditions of the 1-st 
or 2-nd type the finding of 1С , 2С , reduces to the solution 
of one nonlinear algebraic equation. When on the one of 
the boundary surfaces the heat exchange condition of the 
I-t type (

0

*
0,nt t

α
=  ), and on another – the II-nd type 

( ( )
0,

( )
n

t
t t q∂

∂α α
λ =  ) are given, we obtain a closed 

analytical solution. 

APPROBATION OF RESULTS 

Approbation of the proposed analytical-numerical 
approach was carried out on the example of numerical 
study of the hypothetical two-layer cylinder's stationary 
thermal state, the internal surface of which 0 0= rα  is 
under the action of a steady temperature *

0t , and the exter-

nal 2 2= rα  – the heat flow q . At the same time, it was 
believed that on the surface of the conjugation of the 
layers 1 1= rα  the conditions of perfect thermal contact are 
satisfied. 

The temperature field of such layered structure 
according to the relations (11), (15), (16), (17), (18) is 
determined by the formula 
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The constants of integration 1С , 2С  are determined 
from the boundary conditions by relations 
 1 2С qα= , ( )2 0=С ϑ α . 

NUMERICAL STUDIES AND THEIR ANALYSIS 

Numerical studies were carried out for the cylinders, 
whose layers are made of molybdenum, tungsten, 
aluminum or steel. 

Expressions, describing the temperature dependence 
of heat-conductivity factors were obtained by tabular 
data's approximation by polynomial functions using the 
least squares method in the form [2, 11, 12]: 
• for molybdenum [ ]273 ; 1800∈t K K : 
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• for tungsten [ ]273 ; 1800∈t K K  
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• for steel [ ]273 ; 1000∈t K K : 

 ( ) [ ]37345.04 1 0.5
873S

tt W mKλ
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; 
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• for aluminum [ ]273 ; 1000∈t K K : 

( ) ( )

( ) [ ]

3

26

247 1 0.493 10 273

0.49 10 273 ,

A t t

t W mK

λ −

−

= − ⋅ − +
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During studies, the corresponding temperature 
dependence of the layer's material heat-conductivity 
factor ( )( )i

t tλ  in the temperature range of their 

determination ; ∈  p kt t t  was approximated by expres-

sion (5), in which the approximation coefficients ( )Λ i
j  and 

the approximation nodes jt  were given in this way 

( ) ( )( ) ( ) 1, , 1,i i
j t j j p k pt t t j t t m j m−Λ = = + − =λ , 

where m  is the number of approximation nodes. 
Typical results of numerical studies in graphical form 

are shown in Figs. 2–6.  
The behavior of the temperature dependence ( )3M tλ  

and its approximation ( 3) ( )Λ M t  at 30=m  are given in 
Fig. 2. The variation of the relative error of approximation 

( ) ( ) ( )
( )

3
3

3

100%
− Λ

=
M

M

M

t t
t

λ
ε

λ
 is illustrated in Fig. 3 

 

Fig. 2. Temperature dependence ( )3M tλ  and its piecewise 

constant approximation ( 3) ( )Λ M t  at 30=m . 

 
Fig. 3. The changing of the relative error for approximation 

( )3M tλ  by a piecewise-continuous function ( 3) ( )Λ M t  at 30=m  
 

 
Fig. 4. Distribution of temperature along the radial coordinate 

2α = α α%  in a homogeneous cylinder of molybdenum for 
different accuracy of temperature dependence approximation 

( )1M tλ  

Fig. 4 shows the distribution of temperature along the 
radial coordinate 2α = α α%  in a homogeneous molybde-
num cylinder for different accuracy of approximation of tem-
perature dependence ( )1M tλ  at *

0 273t K= , 100q кW= : 
− dash line 1, 2, 3 correspond to the temperature distribution 

calculated for the approximation of the heat-conductivity 
factor's dependence on the temperature ( )1M tλ  by its 
values at the beginning, middle and at the end of the 
temperature interval of its determination; 

− solid lines 4, 5, 6 – for the approximation of the 
themperature dependence ( )1M tλ  according to the 
representation (5) for the number of nodes of 
approximation 5, 10, 30=m , respectively; 

− dash line 7 corresponds to the temperature distribution 
calculated for the dependence 1( )M tλ . 

The temperature distribution along the coordinate α%  in 
a two-layer thermosensitive cylinder (steel-molybdenum 

( ) ( )(1) = St t tλ λ , ( ) ( )(2)
1= Mt t tλ λ ), for the piecewise 

constant approximation of the temperature dependence of 
the heat-conductivity factor (dash curves: 1 – for 1( )λ M kt ; 

2 – ( )1 0.5 273M p kt t +λ  −  ; 3 – 1( )λ M pt ; solid lines 4, 

5, 6 – ( )
,

1
1

,( ) ( )≈ Λ S M
S M t tλ  for 5, 10, 30=m , respective-

ly), is shown in Fig. 5. 

 
 

Fig. 5. Distribution of temperature along the coordinate α%  in a 
two-layer thermosensitive cylinder (steel-molybdenum) for 
different piecewise-constant approximation accuracy of 
dependences of heat-conductivity factors of its components. 

 

The temperature variation along the coordinate α%  in 
a two-layer thermosensitive cylinder (aluminum-tungsten) 
at *

0 273t K= , 100q кW= , for a piecewise constant 
approximation (5) at 30=m  nodes of approximation 
(solid curves 1,2,3 for different dependences of the tungs-
ten heat-conductivity factor 0, 1, 2

0, 1, 2
( )( ) ( )W W W

W W W t tλ ≈ Λ , 
respectively; dash line – for values of dependencies 

[ ]( ) 247A W mKt ≈λ , and ( ) [ ]0 124.335=W t W mKλ ) is 
illustrated in Fig. 6. 

The presented results testify that: 
– the use of piecewise constant approximation (5) 

makes it possible to determine the temperature state with 
arbitrary accuracy Fig. 3; 

– the use of approximation of the temperature 
dependence of the heat- conductivity factor by constant 
value most likely results in significant errors (Fig. 4–6); 

– neglecting the type of the temperature dependence 
of the heat-conductivity factor of the layers material can 
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causes the inadequate estimation of the thermal state of 
the object (Fig. 6); 

–  the proposed procedure ensures rapid convergence 
of the process of temperature numerical determination 
(increase in the number of approximation nodes 30>m  
in the investigated cases practically did not affect the 
numerical value of temperature Fig. 4). 

 

 
Fig. 6. Distribution of temperature along the coordinate α%   
in a two-layer thermosensitive cylinder (aluminum-tungsten)  

for different piecewise-constant approximation accuracy  
of dependences of heat-conductivity factors of its components 

CONCLUSION 

The analytical-numerical approach to solving one-
dimensional problems of steady heat conductivity of 
layered bodies of simple geometry, the materials of which 
have thermal nonlinearity, is proposed. This approach 
makes it possible to investigate the thermal state of 
layered bodies, regardless of the type of the temperature 
dependences of the thermophysical characteristics. Its use 
also avoids the need to find out the existence and 
uniqueness of solution to the nonlinear heat conduction 
problem. The use of such an approach is useful in 
determining the thermo-stressed state of typical parts and 
structure elements of composite structure, in in which the 
heat conductivity factors of components materials have 
different nature of temperature dependence. 
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