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HenepiomnyHi cKki1aa0Bi cTpyMy KOPOTKOI0 3aMMKAHHS MOXKYTh OyTH NPHYMHOIO NMOXHOOK
i1 Yac MOTOYHUX BUMIPIOBaHb. 3HAYEHHA TAKUX MOMHJIOK, SIKi OTPUMYIOTH 32 I0TIOMOI0I0 Pi3HUX
aJIrOpuTMIB, BIIPIBHAIOTHCA MizK 00010 i 3a/1eXaTh TAKOXK Bil NPUITHATOI MoJeJIi cTpyMy mig 4yac
KOpPOTKOro 3amMukanns. IlpoananizoBano pizHi aJropuT™Mu, siki BAKOPHCTOBYIOTH MeTOJ HaiiMeH-
IIHMX KBajIpaTiB, i 3ailicHeHo iX MOPIBHAHHA CTOCOBHO TOYHOCTI OI[IHKM KpHTepiaIbHUX BeJUYUH
3aXHUCTIB Bil CTPyMiB KOPOTKOro 3amukanHs. IlokasaHo, 1m0 HaiOiIbIII MOXHOKH (10 AeKLILKOX
JeCATKIB MPOLEHTIB) 3’ABJIAIOTLCA Y Pa3i BUKOPUCTAHHA MoJAeTi KJIacHYHOro curuamxy. Moaeiab
€JIEKTPUYHOI Mepe:Ki Ha OCHOBI Au(epeHUiiiHOro piBHAHHA KOJIa KOPOTKOr0 3aMHKAHHSI €
PE3UCTUBHOIO U1l MOCTIiliHOI CKJIAA0BOI CTPyMYy, ToAi sIK il MoJajibllie 3aCTOCYBAHHS OOMEKEHO
OLIIHKOI0 AKTUBHOIO i pPeaKTHMBHOIO OMOPIiB K0Ja KOPOTKOro 3aMukanus. binblie Toro, meit
aJIrOpUTM € NPHJATHUM /JJISl TAPMOHIYHOTO CIIOTBOPEHHS, sIKe 3’ABJSAECTLCS Y BUMIPIOBAHUX
curaanax. 3anpornoHOBaHO AITOPUTM, SIKHIi 3aCTOCOBYE PO3KJIaJl eKCIOHeHIiiinuX GyHKii y paau
Teiinopa. Lleii anropuTM HeMa€ HeAOMIKIB NMONepPeIHIX AITOPUTMIB i € yHIBepcaATbHUM.

Non-periodic component of short circuit current can be a source of errors in the on-line
measurements. Values of such errors generated by diverse algorithms is different and depends also
on the assumed model of the fault current. In the paper, different algorithms using the least square
method (LSM) have been analyzed and compared regarding accuracy of estimation of criterion
values of the fault current based protections. it has been shown that the highest errors ( up to some
tens of percents, appear when the classic signal model is applied. Network model based on the
differential equation of the fault loop is resistant to the direct-current component whilst the
application of the latter is restricted to the estimation of the fault loop’s resistance and reactance.
Moreover, the algorithm is susceptible to harmonic distortions appearing in the measuring signals.
An algorithm which implements the expansion of exponential function into the Taylor series has
been proposed. The algorithm is free of drawbacks of precedent algorithms and shows to be the
universal one.

Introduction and fundamental relationships. Modern automatic protections are expected to be
more and more speedy and selective in operation. It refers mainly to the protections of HV objects
important for the system and characterized by high fault currents with high probability of occurrence of
direct current components with decay time constant of some tens to some hundreds milliseconds. These
components can generate the transient errors of estimation of protection’s criterion values [2].As they are
difficult to filter, the error correction algorithms are searched [3,5].one of proposals presented in the work
is an algorithm in which the potential function representing the direct current component in the signal
model is expanded in the Taylor series [4].

Due to the type of transient processes accompanying the faults in the electric power system, there
are numerous undesired and disturbing components in the measuring signals: harmonic, non-harmonic,
steady and transient ones. Let us assume that a signal including K harmonics and direct-current component
is put to the measuring unit’s input. The signal can be analytically presented as:

YO = 3 ¥, cosmoyt=0,)+¥, exp—(%]w(r) (M)
m=1

p
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where M — number of harmonics in consideration; o, - fundamental pulsation; ¢,, — phase angle of m”
harmonic of signal; 7}, — non-periodic current component decay’s time constant; y(f) — measuring error.

Second element of right side of (1) represents the component with Y, initial amplitude which decays
at the decay time constant 7,. Regarding relatively fast decay, the component is not significant in the
traditional measuring methods. However, it could result in important errors in the measuring circuits of fast
electric power protections working according to the on-line algorithms.

Modern protection systems take decision to switch off the failed or risky object basing on the digital
measurement of criterion values. Therefore, it is convenient to operate with discrete magnitudes. Signal (1)
in the discrete form becomes:

y(n)= AZ{, [Ym cos(m 2n n-o, ﬂ +Y, exp(— LnJ . 2)
m=1 N T,

In equation (2), n stands for discrete time whilst N is the number of samples in the fundamental
period T, T; is the sampling period. Equation (2) is the signal model of the process under consideration.

To obtain high speed, selectivity and reliability, the measuring-decision algorithms have to meet
rigid requirements concerning separation of components disturbing the measuring signals. Regarding high
diversity of algorithms, it is not simple to systemize errors resulting from these disturbances. To compare
algorithms to each other, their relative instantaneous values defined as

x,, (n) — x,(n)
x,(n)

can be assumed to be the errors measure, where x,(n) — instantaneous measured values of criterion
magnitude under signal’s disturbances, x;(n) — instantaneous precise values of criterion magnitude.
The error defined that way can not be used to estimate the dynamic properties of the algorithm. The

mean error

dx(n) = 100% A3)

AX () =@\/i Sxem-i)-x,J % (4)
)(1 Tw k=1

is more suitable, where » — number of current sample; X — measured value of determined criterion

magnitude; x;, X;, — precise value of determined criterion magnitude, T,, — measuring window (interval of

analysis), p — number of samples in measuring window.

The conclusion from the formula (4) is that the mean error is a measure of man deviations of
measuring magnitude within the measuring window 7,,, from the precise values of these magnitudes under
steady conditions. Due to such averaging definition of error, the algorithm can be estimated regarding its
susceptibility to the signal’s variations with time; thus, it can be a measure of the algorithm’s dynamics.

LSM- classic signal model. In the method, a true measuring model y(¢) is replaced with a model z(¢)
which is a function of unknown parameters and defined coefficients; it can be written down in the discrete
time domain in the form

z2(n)=A(n)X . (5)

For a model based on m variables, A(n)=[a,, a,, ...a,, | is a matrix of known (assumed) model

coefficients, X =[X, X, X, | — vector of searched parameters of the model.

Measured values of signal y(n) differ from the model by the value of the measurement errory (n) :

y(n)=z(n)+vy(n). (6)
When the expression (5) is placed instead z) into (6), we receive
y(n)=An)X +vy(n). (7)

Implementing the least squares method, the unknown parameters of X model can be found by

minimizing the square of absolute value of error vector y(n). This solution is described by the known
relationship LSM:

X(n)= A%Y(n). (8)
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and
T (V1 4T
A5 =(474)" 4 ©)
is a quasi-inverse matrix. If the matrix is only a function of model’s coefficients (variables) known a priori,
it can be computed off line and saved. The problem becomes more complex if the random components are
already present in the signal, and their values are either unknown or approximate. The time constant 7, of

the direct current component’s decay in the fault current is a good example.

The non-periodic component of short circuit current is heavy to filter off due to continuous
frequency spectrum, and the energy distribution within the spectrum depends on the decay time constant,
i.e. is random as well as the time constant’s value. Therefore, the practical value of algorithms of the
measuring signal non-periodic current component elimination referred in the literature and assuming an a
priori knowledge on the time constant of the component decay 7, is limited to the special cases.
According to the statements of the algorithms’ authors [1], any assumption of inappropriate value of the
time constant may result in greater errors than those resulting from its neglecting in the measuring
algorithm. it can be simply shown using the signal model (2).

Left side of model (2) represents a vector of successive samples of measured signal which, for the
measuring window T, = N - T, (T, —sampling period) equal to the fundamental component period 7, , becomes:

Y(n)=[p(n—N+1) y(n—N+2)...y(m)]" . (10)
In turn, A(n) in equation (7) is a matrix of model coefficients the n-th line of which (after having
assumed a 3-variable signal model, i.e. model consisting of three components) can be written down as:

A(n)= {sin(%r njcos(%r n) exp( _TTi nﬂ , (11)

where T, is the non-periodic current component decay time constant assumed in the model, and, in the general

case, its value differs from the true time constant, i. . T, # T, . y(n) is the vector of measuring errors.

The wanted vector of estimated signal parameters X (n) can be described according to the known
LSM relationship (8).

Third column of matrix (11) can be source estimation error if the non-periodic current component of
unknown decay time constant 7, occurs in the measuring signal. In the work [1], there is the opinion that

maximum error due to this component can reach 17 %. In fact, maximum errors due to the presence of
direct current component in the measuring signal can be much higher as it is shown in Fig. 1.
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Fig. 1. Maximum errors J,0,0f amplitude estaimation using LSM for different values
of direct current component decay time constant of the model (T, )and for three diffeernt direct
current component decay time constant in measuring T,;
1-T,=100ms, 2—T,=50ms, 3—-T, =20 ms

Maximum errors of amplitude estaimation can reach some tens percent and arise when the time constant 7,
arises. Presented characteristics of the error confirm once again that the estimation error will not occur if 7, = T,
As the time constant value 7, depends on many random factors (fault location, fault type, transition resistance at
the fault location, etc.), it is not but the theoretical case. However, the detailed conclusions with practical
significance can be drawn from error characteristics; the optimum choice of the model’s time constant value 7,
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can be chosen. First, the maxima of the error curves always appear for 7,, <7, . Second, for time constant 7,

assumed to be equal to 0 or oo (very large), the occurrence of the amplitude estimation error (caused by the direct
current component in the measuring signal) identical in value and relatively low becomes highly probable.
Referring to two conclusions as above, a third general conclusion can be drawn: the time constant of the model 7,
should be chosen according to the requirement:

T,2T, . (12)

In practice, the direct current component decay time constant for signal model 7,, should be

assumed as the highest value of the measuring signal time constant 7, that could appear under the most
inconvenient fault conditions in the protective zone of the protection.

Circuit model. Let us assume the fault loop measuring voltage can be represented by a series of
samples u(n) described by the differential equation as below:

U(n)=Ri(n)+ LAi(n) + I'(n) (13)
where Ai(n) = (i(n+1) — i(n—1))/2T;, and I'(n) is measuring error, whilst R and L are the model parameters
we are searching for.

As it was a case with the signal parameters’ estimation, equation (13) can be written down in the
matrix form:

U(n)=Amn)X(n)+1I(n). (14)
In equation (14), the vector of samples of the measured signal is in the form like that in the equation (10):
U(n) = [u(n — K+1) u(n — K+2) ... u(n)]” (15)

Other expressions in matrix of the model variables A(n) and of the vector of estimated parameters of
model X(n):

A(n) = [ai(n) ax(n)], (16)
where a,(n)=i(n), a,(n)=Ai(n)=(i(n+1)-i(n — 1))/2T;, and the vector of unknown parameters of the model is:
X(n)=[RL]". (17)
It can be computed from the relationship LSM presented above (8):
X (n)= A% (n)U(n) (18)

where quasi-inverse matrix 4%(n) is given by equation (9).

In the estimation algorithm (18) based on the model of the fault circuit parameters (13), the non-
periodic current component of fault current is effectively eliminated as shown in Fig.2. Waveforms in Fig. 2 are
plotted for measuring window T, equal to the fundamental period 7; and sampling frequency f; = 1 kHz.
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Fig. 2. Source signals (a) , relative resistance values (b) and inductance (c) obtained using the LSM — based algorithm:
1, 3 — with circuit model , 2, 4 — with signal model
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To compare properties of algorithms based on the LSM with signal model (2) and circuit model (13),
the results of estimation of resistance and reactance obtained with both models are shown in Fig.2. The
magnitudes have been dimensioned in relative units, taking a precise value of the fault loop impedance to
be the basic unity. A good effectiveness of the network model in elimination of the impact of the direct
current component of fault current is evidently shown.

However, a circuit model shows some restrictions. First of all, it works only for R and L
estimations; moreover, the differential equations are formulated assuming linearity of the fault circuit
parameters, i.e. lack of the higher harmonics in the source signals.

Model based on Taylor series. As it was stated above, the main and difficult to correct source of
error of the algorithms of criterion magnitudes’ estimation using fault current is the non-periodic current
component with unknown time constant of decay T, . It is widely being assumed that a good model of this

current is a known expression:

i(t)=1cos(w,t—¢)+ 1, exp—(TLJ. (19)

p
The most right-hand component of the right side of the expression can be expanded in the Taylor
series:

et = i ’;, . (20)
n=0
Number of sum’s component shall be limited. In practice, regarding true conditions, if only three
initial elements of series can be taken into account, the error will no exceed. Thus, we can write:
i(t)=I(cosot cosp +sinwtsing )+ I, {1 — At +0,54°¢% - (%A3t3)} 21)
where A=1/T,.
Equation (21) can be re-written in the form:
i(f)=Icosotcosp + Isinotsing + I, — I At +0,51,4°t> -1, 1 A°¢ . (22)
As we can see, the equation as above is a linear algebraic equation of six unknowns:
Icos,Ising, I, 1,4, I,A*, I,A> . To simplify the formal notation, let’s define the unknown
quantities as follows:

Icosop=X,, Ising=X,, I[,=X;, [(A=X,, 1,4° =X, [,A’ = X,. (23)
Thus, equation (22) takes a discrete form:
i(n)= X, cosnQ + X, sinnQ, + X, - X,n+0,5X;n° L X n’. (24)

To find these unknown values, at least six independent equations are needed. The best way is to
define them for different instants. Thus, a set of the (K+1) equations takes a form:

i(n) = X, cosnQ, + X, sinnQ, + X; - X,;n+0,5X;n” —L X1’ +y (n)
i(n—1)= X, cos(n—DQ, + X, sin(n - 1)Q, + X, — X,(n—1)+0,5X,(n—1)* —%Xé(n -D+y(n-1) 25)
i(n—2) = X, cos(n —2)Q + X, sin(n —2)Q, + X; - X,(n—2)+0,5Xs(n -2)" ~L X (n-2) +y (n-2)

i(n—K) = X, cos(n— K)Q, + X, sin(n— K)Q, + X; — X,(n— K)+0,5X,(n - K) —%Xﬁ(n—K)+y(n—K)

In the equation as above, Q, =m,7; is a relative pulsation in reference to sampling frequency

4

f; =1/T, andy is the measuring error.

4 4

Equation (25) can be written in a compact matrix form:

I(n)=A(m)X(n) +y(n) (26)
and vector of samples of the measured current signal is
I(n)=[i(n—-K) i(n— K 1) i(n)] . (27)
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Matrix of the model’s known coefficients is
A(n) =[a,(n) a,(n) a,(n) a,(n) a;(n) a,(n)] (28)
and its elements results directly from the equation set (25):
a, =cosnQ,, a, =sinnQ,, a, =1, a, =-n, a =0,5n2, ag =—%n3. (29)
Thus, all elements of matrix A(n) are determined and can be calculated off line and saved.
Vector of model’s unknown parameters is:
Xm=[X, X, X; X, X; X/]". (30)
When the equation (30) is solved, we can find not only values of the fault current’s orthogonal

components (X,,X,) and its amplitude (\/X L+ X ), but also the magnitudes inaccessible by other

models, such as direct current component of fault current (X,) and decay’s time constant

T, =§—i =§—;‘ =§—2) . Simultaneously, with the signal model using the expansion of potential function

into Taylor series, the inconveniences resulting from the presence of direct current component of unknown
decay time constant and initial amplitude inside the measuring current signal can be avoided.

In Fig. 3, results of estimation of amplitude of both the direct component and alternate current
component of fault current are presented along with the decay time constant of direct current component.
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Fig. 3 shows that application of the signal model with expansion of its exponential component into
Taylor series to estimate the fault current parameters using LSM makes the algorithm insensible completely
to the direct current component. Moreover, due to such approach, estimation of magnitudes inaccessible
with other methods, including random magnitudes like value and time constant of the fault current’s non-
periodic current component decay, becomes feasible.

Summary and final remarks. In the work, the least squares method (LSM) has been applied to
estimate some criterion values based on fault current. Algorithms referring to three different models have
been presented, 1. e.:

— classic signal model in which the fault current is represented by three components: two
orthogonal components and one exponential component representing non-periodic short circuit
current component,

— circuit model in which the fault current loop is assumed to be represented by linear resistances
and reactances connected in series; criterion magnitudes are computed from differential
equations defined at different instants within measuring window,
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—  “non-classic” signal model which differs from the ,,classic” model by using expansion of
exponential expression representing direct current component of fault current into Taylor series.

The computational complexity of all models is similar. Partial conclusions have been presented
when each of individual algorithms has been discussed. To summarize, it can be stated that the third of the
considered algorithms i.e. that with expansion of exponential function into Taylor series, has shown its
supremacy over two others: it is highly universal and significantly insensible to the direct current
component of fault current. Regarding the paper’s volume, the analysis of errors resulting from the
limitation of Taylor series elements number to three has not been reported. However, the reported figures
give the graphical image of estimation and show that such limitation does not lead to significant errors.
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OTtpumano au¢epeHuiiiHi piBHAHHA ACHMHXPOHI30BaHOr0 TypOoreHepaTopa B pe:KHMi
OdHO- Ta ABO(A3HOI0 3aMMKAHHS HA HeWTpaadb Ui BH3HAYCHHSI XapaKTePHUCTHK CTPyMiB
HECUMETPUYHHX PeKUMIB podoTH.

Here we obtain differential equations of doubly fed wound induction generator in one-
and two-phase fault on the neutral to determine the asymmetric mode.

IMocranoBka mpo6JieMu. 3aCTOCYBaHHS B €HEPrOCHCTEMAaX aCHHXPOHI30BaHHX TypOOreHepaTopiB
(ACTT) no3Boinse epeKTHBHO BHPIIIMTH MPOOJIEMY CIIOKMBAHHS HaJIMIIKIB PEAKTUBHOI MOTY>KHOCTI, IO
BHHHKAIOTh B BUCOKOBOJITHHUX MEpEKax y FOAWHHU “mpoBaliB” rpadika HaBaHTaxkeHb. Kpim Toro, ACTI
mo30aBlieHi OOMEXEHb 3a CTIMKICTIO pOOOTH B peXHUMaX CIIOKHBAHHS PEAKTUBHOI IMOTY)KHOCTI, SKi
BJIACTHBI TPaJMIIIHHUM CHHXPOHHHMM T'eHepaTopam [1].

[IpoBezeHi paHille TOCTIHKEHHS [2] MOKa3yIOTh JeAKe 3HUKEHHS CTPYMIB TpH(]a3HOro KOPOTKOTO
3aMHKaHHS B MEpeXKaX 3 aCHHXPOHI30BaHMMHM IeHepaTOpaMH, IO JOJATKOBO 30UIbIIye e(heKTHBHICTD 1X
BUKOPUCTAHHSL.

AHaJi3 ocTaHHIX A0caimKeHb. OCTaHHIM YacOM BEAYThCSA POOOTH [2] 3 BUSBIICHHS XapaKTEPUCTHK
pexumiB ACTI mix yac cuMeTpUYHOro TpH(a3HOro KOPOTKOro 3aMUKaHHs, OJHAK OCOOIMBOCTI PEKUMIB
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