Weight Determination of Building Environmental Assessment Indicators

Eva Krídlová Burdová, Silvia Vilčeková, Ingrid Šenitková

Institute of Building and Environmental Engineering, Civil Engineering Faculty, Technical University of Košice, Vysokoškolská Str., 4, Košice, 042 00, SLOVAKIA, E-mail: eva.burdova@tuke.sk

Abstract – Building environmental assessment systems were developed in the past decade and used in different countries for evaluating the building environmental performance. Building environmental assessment and certification is a specific complex of proceedings oriented to systematic and objective evaluation of buildings and their environment. In Slovakia the building environmental assessment system is in process of development. The base of system available in Slovakia is systems used in many countries. The proposal of system and weight determination of building environmental system indicators via Saaty's method is presented in this paper. Saaty's method was used for determination percentage weight of main assessment fields.

Key words – Building Environmental Assessment, Saaty's Method, System, Weight

I. Introduction

The field of building environmental assessment has matured remarkably quickly since the introduction of BREEAM, and the past thirteen years have witnessed a rapid increase in the number of building environmental assessment methods in use world-wide [1]. The most significant building environmental assessment systems used over the world are BREEAM, Green Globes, LEED, SBTool, CASBEE, HK-BEAM, NABERS, LEnSE, etc. (Table 1). These eight models used world wide in relation to environmental assessment of buildings, were compared on the basis of their covered [2, 3].

II. The proposal of building environmental assessment systems applicable in SR

building environmental assessment system The applicable in Slovakia is in process of development on the bases of available information analysis from evaluating of building performance and also on the base of own experiences. The base of building environmental assessment system proposal was mainly system SBTool [2, 3, 4, 5]. Percentage weight of each proposed indicator will be determined on the base of their significance, according to mathematical method. Mathematical mechanism for evaluation processes in field of environmental engineering is extensive. There are many methods for the determination of criteria significance, parameters significance, control of dependency, tests of sensitivity etc. For example: Saaty's method, Metfessel allocation, Point method, EDIP method etc.. Objective methods was analyzed and evaluated in context of building environmental assessment requirements in benefit with respect to qualitative and quantitative characteristic of ranking the significance of the particular indicators. Following analyze of criteria weights estimation methods were determined by Saaty's method.

This method was used for determination percentage weight of main fields of assessment.

TABLE 1

THE MOST SIGNIFICANT BUILDING ENVIRONMENTAL ASSESSMENT	
SYSTEMS USED OVER THE WORLD	

System					
System	Country	Main fields			
BREEAM	UK	Management, Healthy and well being, Energy use, Pollution transport, Materials, Land and			
Green Globes	Canada	ecology, Waste Water Energy, Water, Resources, Indoor environment, Emissions, Environmental management			
SBTool	28 countries	Site selection, Project planning and development; Energy and resource consumption; Environmental loadings; Indoor environmental quality; Functionality and controllability of building systems; Long-term performance; Social and economic aspects			
LEED	USA	Sustainable site, Water efficiency, Energy & Atmosphere, Materials & Resources, Indoor environmental quality, Innovation & Design process			
CASBEE	Japan	Quality Q – Building environmental quality and performance (Indoor environment, Quality of service, Outdoor environmental on site) and loadings L – Reduction of building environmental loadings (Energy, Resources and materials, Off-site environment)			
HK- BEAM	Hong Kong	Site aspects, Materials aspect, Water use, Energy use, Indoor environmental quality, Innovations and performance enhancements			
NABERS	Australia	Land, Materials, Energy, Water, Interior, Resources, Transport, Waste			
LEnSE	**	Environmental, Social and Economical aspects			

**Belgium, France, Great Britain, Germany, Netherlands, Greece, Switzerland a Czech Republic

71

A.Main fields

Table 2 summarizes the proposed fields and their subfields and conkrete indicators of building environmental assessment system with their weights determined by Saaty's method.

TABLE 2

BUILDING ENVIRONMENTAL ASSESSMENT SYSTEM PROPOSAL

Build	ING ENVIRONMENTAL ASSESSMENT SYS	TEM PROPOSAL
	Fields and sub-fields	Weights
		[%]
A	Site Selection, Project Planning	14
A1	Site selection	
Selecti	on of ecologically valuable or sensitive	land, land
	ble to flooding, land close to water end	
	ination, Brownfield lands; Distance to	
and cul	tural facilities, to public green space, to	o engineering
	ks, to road-traffic infrastructure	
A2	Project Planning	
	essment of renewable feasibility, Prepar	
	nent report, Applicable orientation to m	naximize
	solar potential	
A3	Urban Design and Site Developme	
	elopment density; Possibility change bu	
Relatio	nship of design with existing streetscap	bes; Policies
govern	ing use of private vehicles; Use of trees	s for solar
shading	g and sequestration of CO ₂ ; Developme	ent of wildlife
corrido	rs	
В	Building Construction	12
B1	Materials	
Cert	fied building products; Use of cement	substitutes in
concret	te, materials that are locally produced, 1	recycled
materia	lls; Non-renewable primary energy emb	oodied in
	ction materials; Radioactivity building	
	n hazardous substances during product	
	lls; Selection low - emission building n	
	uctions limiting migration pollutions be	etween
	tions rooms, Eco-labeling	
B2	LCA	
	nountable, reuse and recycling; LCA in	npact on cost;
	Renewable	10
<u>C</u>	Indoor Environment	19
	mal comfort in heating season, in cooli	
Ventila	tion; Air quality; Noise attenuation thr	ough the
	r envelope; Noise isolation between pri	
	ncy areas; Daylighting; Shading and bl g; Interior materials; Particular matters;	
	on between occupancies	ronutant
D		28
 D1	Energy Operation Energy	20
	Operation Energy gy for heating, domestic hot water, me	ahania
	tion and cooling, lighting and energy for	
D2	Active systems on using renewable	
	r system; Heat pump for heating and do	
	nd cooling; Photovoltaic technology; F	ieat
recuper D3		
	Maintains Energy	ing
	gy management; Operation and mainta	
E Bada	Water	12
	action and regulation water flow; Sur	
	inking water supply; Using filtration "g	
F F1	Waste	14
F1	Solid waste	
	d waste; Measures to minimize solid wa	
	uilding construction and operations; Co	mposting
F2	Liquid waste	<u> </u>
	sures to minimize gas waste from build	ing
constru	ction, operation	

B.Saaty's Method

The Saaty's method enables us to model a complicated decision problem with the help of a hierarchical structure that is composed of the goal, criteria, sub criteria and alternatives. The advantage of this method is the possibility to handle both qualitative, as well as quantitative objects. The output of this method is a mathematically correct quantitative evaluation of alternatives being assessed. The Saaty's method dealt with consistency of the pairwise comparison matrix. A consistent matrix mean e.g. if the decision maker says a criterion i is as important as another criterion j (so the comparison matrix will contain value of aij = 1 = aji), and the criterion j is absolutely more important as the criterion i (aji = 9; aij = 1/9); then the criterion i should also be absolutely more important than the criterion i (aij = 9; aji = 1/9). The idea of the Saaty method is based on the fact that it is easier for a person to come up with relational evaluations rather than with absolute evaluations. In addition, comparing items in pairs renders the most accurate evaluation of an assessed characteristic; the Saaty scale is used for that. In the table (Table 3) is scale of relative importance for pairwise comparison. This scale consists from intensity of importance and descriptor. A nine point scale is provided to quantify pairwise importance or preference and intermediate values are used to interpolate between adjacent scale values. After conducting such comparisons, what follow is the derivation of different alternatives' weights, as well as that of the criteria. This means composing absolute scales by using mathematical methods described by Saaty. It is an important fact that in conducting measurements, no standard scale has to be used - experience, intuition or knowledge is usually sufficient [5, 6, 7, 8].

TABLE 3

 $\label{eq:scale} Scale \mbox{ of relative importance for pairwise comparison}$

Intensity	Descriptor	
of Importance	Verbal Scale	Explanation
1	Equal importance of both elements	Two elements contribute equally
3	Moderate importance of one element over another	Experience and judgment favor one element over another
5	Strong importance of one element over another	An element is strongly favored
7	Very strong importance of one element over another	An element is very strongly dominant
9	Extreme importance of one element over another	An element is favored by at least an order of magnitude

In the table below (Table 4) is presented example of main field's weighting by Saaty's method. The main fields are marked: A – Site Selection, Project Planning and Development; B – Building Construction; C – Indoor Environment; D – Energy; E – Water, and F – Waste.

The criteria weight was assigned using Saaty's matrix implementation in excel program.

a(i,j)	Criteri	a					
Criteria	А	в	С	D	Е	F	Weights v(i)
A	1,00	1,00	0,67	0,50	1,50	1,00	0,141
В	1,00	1,00	0,67	0,50	0,67	1,00	0,124
С	1,50	1,50	1,00	0,67	1,50	1,50	0,194
D	2,00	2,00	1,50	1,00	2,50	2,00	0,280
Е	0,67	1,50	0,67	0,40	1,00	0,67	0,119
F	1,00	1,00	0,67	0,50	1,50	1,00	0,141
Total							1,000

EXAMPLE OF ANALYTIC HIERARCHY PROCESS (SAATY) METHOD

A. The way of evaluation

The way of each indicators evaluation is in principle the same. All performance criteria are scored (from -1 (negative) to +5 (best practice)), then summed using weightings. The result of assessment is histogram. All performance criteria are assessment according to standards and laws valid in Slovak Republic.

1.Site Selection, Project Planning

Indicator from sub-field "Site selection" is related to selection of land vulnerable to flooding. This indicator introduced in the table 5 is assessed according to height above 100-year flood plain as defined in official documentation.

TABLE 5

TABLE 4

 $\label{eq:selection} Selection \mbox{ of land vulnerable to flooding}$

A1.2	Selection of land vulnerable to flooding			
	To discourage the selection of land for			
Purpose	building where there is a substantial risk			
	that the site may be flo	ooded.		
	Height above 100-year flood score			
Indicator	plain as defined in official			
mulcator	documentation or assessment by			
	component authorities.			
Negative	The height of the	-1		
Acceptable	minimum elevation	0		
Good	of the site above the	3		
Best	elevation of the 2,5 m			
	100-year flood plain			
	is:			

2. Building construction

In table 6, there is presented indicator "Eco-labeling" from sub-field "Materials". The evaluation of this indicator is according to the percentage, by weight, of building environmentally friendly product which are inbuild in rating building. The pursose of this indicator id to encourge production and consumtion of product with less adverse effects on the environment.

B1.1	Eco-labeling		
Purpose	To encourage production and consumption of products with less adverse effects on the environment, to inform consumers about the environmental characteristics of products.		
Indicator	Use of environmentally friendly building products		
Negative	The percentage, by	3 %	-1
Acceptable	weight, of building 15 %		0
Good	environmentally 51 %		3
Best	friendly product is:	75 %	5

3.Indoor Environment

The example of way of assigning score is according to the rule that is show in the table (Table 7). The indicator from field "Indoor environment" related to thermal comfort is assessing according to requirements of European standard (EN 15251:2007). Scale of assessment is making on the base of operative temperatur whicht is in 95 % of building volume.

TABLE 7

THERMAL COMFORT IN HEATING SEASON

C1	Thermal comfort in heating season				
Purpose	To ensure thermal comfort in heating				
ruipose	season.	season.			
	Designed va	Designed value of operative			
Indicator		temperature is in accordance			
mulcator		ents of relevant	score		
	standards (EN 1				
Negative	In 95 % of	In 95 % of θo<19°C			
Acceptable	building	building 19≤θo<20°C			
Good	volume the	3			
Best	operative				
	temperature	θo≥21°C	5		
	is:	is:			

4.Energy

In table 8 is presented indicator "Energy needs for heating" from field about energy. The assessing of energy needs for heating is according to standards about energy efficiency of buildings (Law No. 555/2005).

TABLE 8

73

ENERGY NEEDS FOR HEATING

D1.1	Energy needs for heating			
-				
Purpose	To determine energy needs for he	To determine energy needs for heating.		
	Class of energy for heating according standards related to	score		
Indicator	energy performance of buildings			
	(Law No. 555/2005).			
Negative	Energy for heating is in lower	-1		
riegative	class as C.	-1		
Acceptable	Energy for heating is in class C.	0		
Good	Energy for heating is in class B.	3		
Best	Energy for heating is in class A.	5		

5.Water management

In table 9, there is presented indicator Surface water runoff "". The evaluation of this indicator is according to quality of a surface water management plan.

TABLE 9

SURFACE WATER RUN-OFF				
E2	Surface water run-off			
Purpose	Purpose To ensure that surface water is managed within site boundaries and is re-injected into the aquifer.			
Indicator	The quality of a surface water management plan.	score		
Negative	A credible general plan has not been developed for the management of surface water.	-1		
Acceptable	A general plan has been developed for the man agreement of surface water and its percolation into the ground within site boundaries, including at least 80 % of natural surface water courses, paved and landscaped areas.	0		
Good	A detailed plan has been developed for the management of surface water and its percolation into the ground within site boundaries, including at least 90 % of natural surface water courses, paved and landscaped areas.	3		
Best	A detailed plan has been developed for the management of surface water and its percolation into the ground within site boundaries, including 100 % of natural surface water courses, paved and landscaped areas.	5		

SURFACE WATER RUN-OFF

6.Waste management

In table 10, there is presented indicator "Measures to minimize solid waste resulting from building operations". The evaluation of this indicator is according to development of a credible construction waste management plan.

TABLE 10

MEASURES TO MINIMIZE SOLID WASTE RESULTING FROM BUILDING OPERATIONS

F 1.2	Measures to minimize solid waste resulting		
	from building operations		
Purpose	To minimize the amount of waste off the		
	site by encouraging the development and		
	implementation of a construction waste		
	management program, with sorting, re-using		
	and recycling measures.		
Indicator	The development of a credible		
	construction waste management		score
	plan.		
Negative	The percentage, by	3 %	-1
Acceptable	weight, of construction	15 %	0
Good	waste to be re-used or	51 %	3
Best	re-cycled, as predicted		
	in the construction was	75 %	5
	management plant, is:		

Conclusion

The approaches of the assessment methods used in many countries are principally not different. Several differences are in terminological expression, in some of them the different indicators are assessed under the same areas; as well as the ways of impact rate classification are different and mostly respect national particularity. In this paper is introduced the proposal of building environmental assessment system applicable in Slovak conditions. The base of assessments development is systems and methods used in many countries. The main building environmental assessment fields are site selection, project planning and development; building construction; indoor environment; energy; water and waste. There are presented the way of evaluation with respects of standards and laws valid in Slovakia.

Acknowledgements

The author is especially grateful to NATO - scientific committee and Slovak Scientific grant agency for supporting of project ESP.NUKR.CLG 982978 Building Environmental Assessment and Certification as well as the project VEGA 1/0585/09. The paper was created in connection with research center of excellence within the project ITMS "26220120018"

References

- Šenitková, I., Vilčeková, S. Indoor Air Quality Auditing. In: Proc. of XXXII IAHS International Congress: Sustainability of the Housing Projects, Trento, Italy, 2004, 6 pgs, ISBN 88-8443-071-2.
- [2] Vilčeková, S., Burdová, E., Šenitková, I. Sustainable building assessment systems summary. In: Interrupted operation. Journal of Lviv National University, Lviv Ukraine, No 600, 2007, p. 559-567, ISSN 0321-0499.
- [3] Vilčeková, S., Šenitková, I. Systémy a metódy environmentálneho hodnotenia budov. In: TZB Haustechnik. Vol. 15, No. 4 (2007), p. 56-57. ISSN 1210-356X.
- [4] Vilčeková, S., Burdová, E. The proposal of sustainable building assessment system. In: Indoor Climate of Buildings '07: Indoor environment and energy performance of buildings: 6th international conference. Štrbské Pleso, 2007, p. 99-106. ISBN 978-80-89216-18-5.
- [5] Krídlová Burdová, E. Building Environmental Assessment System and Weight Determination via Saaty's Method. In: Mladý vedec 2009, 2009, p. 7, ISBN 978-80-553-0176-1
- [6] Laidre, A. A Web Application for Evaluating it Investments.

http://www.netekspert.com/download/confpaper3.pdf

[7] Korviny, P. Teoretické základy vícekriteriálního rozhodování.

http://mca7.wz.cz/soubory/teorie_mca.pdf

[8] Říha, J. Multikriteriálni hodnocení. 25. 7. 2007, p. 67 http://www.brno.cz/download/europoint/analyza2007 /analyza-prilohac1.pdf