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Abstract 

A new criterion driving the choice of the locations of the Auxiliary Sourcers (AS) is 

introduced with the aim to improve the performance of the Method of Auxiliary Sources 

(MAS) applied to the solution of the integral equations as those encountered in electro-

magnetic scattering. 

The approach is based on the optimization of the singular value behavior of the ma-

trix relating the AS excitations and the scattered field values at the matching points on 

the scatterer boundary. The ill-conditioning of the problem of determining the AS exci-

tations matching the boundary conditions is then significantly reduced and the accuracy 

of the estimated scattered field is improved. 

The performance of the method is numerically assessed, in a 2D scalar geometry, by 

discussing in the details the case of a circular perfectly conducting scatterer. 
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1. INTRODUCTION 

The Method of Auxiliary Sources (MAS) is a nu-

merical technique which can be applied to the solution 

of elliptic boundary value problems and fruitfully ex-

ploited in electromagnetic radiation or scattering prob-

lems. The technique aims at expressing the 

radiated/scattered field as that produced by fictitious 

sources (the Auxiliary Sources – AS) located some-

where inside the physical radiator/scatterer and whose 

excitations generate a radiated/scattered field compati-

ble with the boundary conditions [1]. 

The method is mathematically rigorous, since the 

basis functions used for the field expansions on the 

problem boundary (i.e., the field radiated by the AS' on 

the boundary) are complete [2]. Moreover, it appears 

more attractive than the standard Method of Moments 

(MoM) [3], due to its simpler implementation which 

prevents from singularities associated to the diagonal 

elements of the so-called “impedance matrix” used in 

MoM, and thus avoid time consuming numerical inte-

grations. 

Nevertheless, the MAS is generally considered less 

robust than MoM, due to the missing of a reliable, gen-

eral criterion driving a correct location of the AS'. In 

other words, as reported in the literature [4], the unsuc-

cessful selection of AS locations can lead to poor accu-

racies or even to completely unacceptable solutions. 

In this paper, we propose a criterion to determining 

the optimal number and locations of the AS'. These are 

obtained by optimizing the singular value behavior 

[5,6] of the relevant matrix connecting the AS excita-

tions to the field values at the matching points on the 

scatterer boundary. Accordingly, the ill-conditioning of 

the problem of determining the AS excitations match-

ing the boundary conditions is strongly mitigated and 

the reliability and the accuracy of the solution im-

proved. It is worth noting that the approach enables a 

fully automatic selection of the number and location of 

the AS', without any user's intervention.  

The performance of the method is numerically as-

sessed, in a 2D scalar geometry, by discussing in the 

details the case of a circular perfectly conducting scat-

terer, so that a comparison against  theoretical solution 

is possible [1]. 

2. OPTIMIZED MAS 

Let us consider a 2D, perfectly conducting scatterer, 

illuminated by a known impinging electromagnetic 𝑧-

directed field 𝐸𝑖 , as depicted in Fig. 1. 

 

Fig. 1. Geometry of the problem. 
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According to the MAS, the 𝑧-component of the scat-

tered field 𝐸𝑠 outside the object is represented as the 

superposition of the fields radiated by fictitious current 

filaments located in the object’s interior, that is (apart 

from unessential constant factors) [1-5] 

 

𝐸𝑠  𝜌 =  𝑐𝑘𝐻0
 2 

 𝛽   𝜌 − 𝜌𝑘
′    

𝐾

𝑘=1

,                            (1) 

 

where 𝜌 denotes a generic observation point, 𝜌𝑘
′  lo-

cates the 𝑘-th AS, 𝛽 is the wavenumber, 𝐻0
 2  ·  is the 

Hankel function of zero-th order and second kind, 𝑐𝑘  is 

the excitation coefficient of the 𝑘-th AS, and 𝐾 is the 

overall number of sources. 

The boundary condition on Γ can be then written as 

 

 𝑐𝑘𝐻0
 2 

 𝛽   𝜌 − 𝜌𝑘
′    =

𝐾

𝑘=1

− 𝐸𝑖  𝜌 ,          𝜌𝜖Γ.      (2) 

 

By sampling eq. (2) at a number of 𝐿 points 𝜌𝑙  on Γ, 

𝑙 = 1, … , 𝐿, it can be recast in the matrix form 

 

𝑍 𝐼 = −𝑉                                                               (3) 

 

where 𝑍  is the matrix whose generic element is 

𝑍𝑙𝑘 = 𝐻0
 2 

(𝛽   𝜌𝑙 − 𝜌𝑘
′   ), 𝐼 is the vector containing 

the 𝑐𝑘 ’s and 𝑉 contains the incident field samples 

𝐸𝑖  𝜌𝑙 . 

The excitations 𝑐𝑘  of the current filaments can be 

determined by solving eq. (3) by a Singular Value De-

composition (SVD) approach [7]. On denoting by 𝜎𝑛  

the singular values of 𝑍, the ill-conditioning of the 

problem of determining the 𝑐𝑘 ’s can be faced by a 

Truncated SVD (TSVD), i.e., by cutting all the singular 

values falling below 𝜏𝜎1, where 𝜏 is a threshold fixed 

according to the expected amount of noise (due, e.g., to 

the finite machine precision) and 𝜎1 is the greatest sin-

gular value. By this approach, the condition number of 

the regularized 𝑍 is 𝜎𝑁/𝜎1, where 𝑁 = 𝑑𝑖𝑚 𝜎𝑛 |𝜎𝑛 ≥

𝜏𝜎1 .  
Obviously, the inversion of the regularized 𝑍  should 

be performed under the “best” possible conditions. This 

occurs when 𝑁 is large, i.e., when the number of singu-

lar vectors employed to expand 𝐼 is as large as possible. 

Finally, it should be noticed that the singular values 

behavior depends on the locations of the AS’, which 

defines a family of problems parameterized on the AS’ 

locations. 

These observations provides a criterion to determin-

ing the optimal AS’ locations, for a fixed number K. 

Indeed, for a fixed 𝐾, the number N of singular val-

ues falling above  𝜏𝜎1 can be optimized by minimizing 

the functional 

 

Φ(𝜌1
′ , 𝜌2

′ , … , 𝜌𝐾
′ ) =

1

𝑑𝑖𝑚 𝜎𝑛 |𝜎𝑛 > 𝜎1𝜏 
.              (4) 

 

It is worth noting that the outlined approach does not 

depend neither on the particular scatterer’s geometry 

nor on the characteristics of impinging field, so that it 

can be applied to the general case. 

3. OPTIMIZED MAS FOR PERFECTLY 

CONDUCTING CIRCULAR CYLINDERS 

In this Section, we apply the previously discussed 

optimized MAS approach to the case of a circular cy-

linder with radius 𝑎 under plane wave incidence, so 

that comparisons with theoretical results can be 

achieved. For this simple situation, and due to the prob-

lem symmetry, the AS’ are located over a circle of ra-

dius 𝑏 < 𝑎 with uniform angular spacing, so that 

Φ = Φ(𝑏) [4]. 

A threshold 𝜏 = −50𝑑𝐵 has been assumed through-

out the simulations. Furthermore, a number of AS’ 

𝐾 =  2𝛽𝑎 + 1,  𝑥  denoting the integer part of x, has 

been considered. 

 

Fig. 2. Behaviour of the functional Φ(b) for a=2.5. 

 

Circular cylinder with a=2.5 

We consider first the case of a circular cylinder with 

radius a=2.5, i.e., for a cylinder with a radius “diffi-

cult” to be dealt with [4]. Fig. 2 shows the behavior of 

the optimized functional against the radius b. The op-

timal radii 𝑏𝑜𝑝𝑡  are represented by any 𝑏 > 1.6𝜆. 

It should be noticed that, fixing a threshold 𝜏 for the 

singular values amounts to fixing a desired condition 

number, as done in [4]. It has been also verified that, 

lowering 𝜏 (i.e., accepting a higher degree of ill-

conditioning) brings the auxiliary circle radius b, close 

to a, which matches the observations of [4].  

On the other side, Fig. 3 shows the optimal locations 

of the AS’ when 𝑏 = 1.2𝜆. Finally, Figs. 4 and 5 show 

the reconstructed scattered field amplitude and phase, 

respectively, as compared to those evaluated according 

to a cylindrical wave expansion.  

 

Circular cylinder with a=6 

We finally show the case when a=6. The consi-

dered optimal radius has been 𝑏𝑜𝑝𝑡 = 4.9𝜆. Figs. 6 and 
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7 compare the recovered far-field pattern amplitude and 

phase, respectively, with that evaluated according to 

the cylindrical wave expansion.  

 

Fig. 3. Optimized AS’ positions for the case a=2.5. 

 

 

Fig. 4. Amplitude of the scattered field for the case 

a=2.5. 

 

Fig. 5. Phase of the scattered field for the case 

a=2.5. 

5. CONCLUSIONS AND FUTURE 

DEVELOPMENTS 

We have proposed an approach to optimize the 

choice of the locations of the AS for the MAS for solv-

ing the electromagnetic scattering direct problem. The 

method has been herein tested against the case of per-

fectly conducting circular cylinders under a plane wave 

incidence.  

As future developments, we foresee the evaluation 

of the method in the case of elliptical cylinders, for 

which wave expansions in terms of Mathieu functions 

are available and applications to the case of arbitrarily 

shaped scatterers. 

The presented approach is amenable to extensions to 

other numerical techniques for the solution of electro-

magnetic radiation/scattering problems, e.g., MoM. 

 

Fig. 6. Amplitude of the scattered field for the case 

a=6. 

 

Fig. 7. Amplitude of the scattered field for the case 

a=6. 
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