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Abstract
We present a new approach to analysis of curvilinear perfect conducting surface ra-

diators. The feature of this approach is a formulation of boundary value problem as a
system of integral equations in regard to the complex electrodynamic vector potential
and the scalar potential and simultaneous solution of this system for unknown distribu-
tions of current density vector and charge density using technique of parametrical map-
ping for representing curvilinear surface and the Galerkin’s method with boundary
elements. Advantages of the approach in comparison with the Harrington integral equa-
tion on example of surface current distributions at the third order surface (Ferguson’s-
patches) are demonstrated.

Keywords:  Boundary value problem, integral equation, numerical solution, Galerkin’s
method, parametric surface, curvilinear conducting surface radiator.

1. INTRODUCTION
It is well known, predicting of characteristics of a ra-
diator is easy to carry out, if an amplitude-phase distri-
bution (APD) of current on its surface is known. To
determine APD of a current on a radiator surface an
appropriate boundary value problem must be solved.
Obviously a mathematical formulation of such a prob-
lem using electrodynamic potentials is the best way for
analysis of a surface radiator of the arbitrary shape. In
this case the problem is reduced to obtaining an integral
equation.

Application of integral equations for analysis of ra-
diators has already got more than centenary history [1].
It is known that for a thin conductor what the surface is,
it is better to apply an electrical field integral equation
(EFIE). Pocklington and Harrington EFIE are for a
long time known and widely applied in practice of lin-
ear antennas [1]. We do not consider Hallen integral
equation, since it has no electrical field in a right part in
an obvious form [1] that hampers the description of an
excitation source.

However, numerical solutions of the integral equa-
tions in the case of surface current distribution is rather
difficult. As such Pocklington EFIE contains terms in
it’s kernel, inversely proportional to a quintic degree of
distance between a source locus and view point of a
field. Therefore, to provide acceptable accuracy of nu-
merical integration an excessively large costs of CPU
time is required. As far as Harrington EFIE concerned
its kernel contains divergence of a current density vec-
tor that in the case of a curvilinear surface gains a
rather cumbersome and complicated form. Nevertheless

it is necessary to define it analytically since the nu-
merical derivation inside numerical integration can
result in divergency process and consequently requires
special investigations of stability in each particular
case.

The disadvantages of Pocklington and Harrington
EFIE arise due to reduction of quantity of unknowns in
the integral equation by excluding APD of charge den-
sity from the potential part of the equations. It is
reached by application either Lorentz calibration, or the
law of current continuity. In outcome, the only un-
known quantity in the equation is current. Such an ap-
proach made sense earlier, when computer powers were
insufficient to store in memory a large scale arrays of
data and to inverse matrixes of large dimensions. At
present such limitations have already not take a place.
Nevertheless at the solution of the integral equation by
a variational-steady Galerkin’s method for the surface
case it is necessary to evaluate quadruple integrals and
the cost of CPU time of numerical integration with a
satisfactory degree of accuracy still remains rather es-
sential. Therefore at a formulation of mathematical
description of the boundary value problem for a con-
ducting surface radiator we shall displace accent on
obtaining more simple integrand expressions for calcu-
lations.

We propose a new approach to analysis of curvilin-
ear ideally conductive surface radiators. The feature of
this approach consists in a formulation of the boundary
value problem as a set of equations in regard to the
complex electrodynamic vector and scalar potentials,
simultaneous solution of the set of equations obtained
for unknown complex current density vector and
charge density, application of a technique of parametric
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mapping for representation of computational domain
and Galerkin’s method with boundary elements.

2. MATHEMATICAL DESCRIPTION OF THE
PROBLEM

For the mathematical description and numerical solu-
tion of the boundary value problem for curvilinear con-
ductive surface radiator we shall construct the
generalized model of the antenna on the basis of two
Ferguson’s patches [2], connected by a narrow strip at
the middle (Fig. 1). Such a structure allows, on the one
hand, to describe flexibly a wide class of radiators, and,
on the other hand, provides a capability to evaluate
features of application of different versions of mathe-
matical description of the boundary value problem for
numerical researches, as far as Ferguson’s patch is a
surface of the third order.

We offer not to solve Pocklington or Harrington
EFIE, but to form the following sets of equations, using
the charge conservation law in the integral and differ-
ential form [3]:
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and to solve one of them. In (1) and (2):
E
  is a complex vector of electric field intensity;
j  is the imaginary unit;
  is a circle frequency;

0  is the free space magnetic constant 7104 
(H/m);

0  is the free space electrical constant   91 1036  
(F/m);
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  is the following complex electrodynamical scalar
potential
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In (3) and (4):
V   is a volume in free space, where there are sources

of a field;

J
  is a complex vector of a current density;
  is a complex charge density;

00k  is the free space wave number;
r  is a distance between a source locus and view

point of the field.
It enables one to apply a Galerkin’s method to inte-

grals with much more simple integrands than in Pock-
lington and Harrington EFIE.

Analysis of numerical solutions of the boundary
value problems using (2) has shown this set of equa-
tions can be applied to a segment of a flat straight-line
nonparametric and distortionless surface only. The at-
tempts to apply (2) for other surface types were not
successful. Besides, despite of more simple form, the
system (2) has no advantages in CPU time as compared
to system (1), since the calculation of Lorentz calibra-
tion (second equation in (1)) is carried out from 200 up
to 800 times faster than calculation of integrals of the
first equation in (1) due to application of the points
matching method [1]. Therefore for further investiga-
tions we shall use the system of integral equations (1).

Besides we shall compare CPU time of calculations
and distributions of surface current density obtained
using system (1) with Harrington EFIE (in spite of that
the solutions Pocklington and Harrington EFIE by
Galerkin’s method are completely equivalent), as far as
computing time for a diagonal element of the matrix of
the generalized impedances for Pocklington integral
equation is on the average from 7 up to 20 times more,

a)

b)

Fig. 1. Model of an antenna with Ferguson’s
patches.

a) model1 – planar case
b) model2 – curvilinear case
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than the computing time for the similar element in Har-
rington equation at the same value.

To transform the equation (1) from the case of volu-
metric distribution of currents and charges to a surface
case, we shall enter the parametric description of a sur-
face. Let's consider in free space a simple connected,
simple, smooth and non-closed surface (S) of a perfect
indefinitely thin conductor. This surface represents a
regular mapping in the metric three-dimensional space
of a parametric rectangular flat segment (T) [4]:

     ytxtzmzmytxtymymytxtxmxm ,,,,,  ,  (5)
where ytxt,  are parametric coordinates of a parametric
plane (T);

zmymxm ,,  are metric coordinates of a metric surface
(S).

By derivation of electrodynamical potentials on co-
ordinates of a view point of a field, after cumbersome,
but not complicated transformations, we obtain the
following new record of Harrington integral equation
and the set of equations (1) in a parametric and com-
pact vector form:
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where
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Y  is the Jacobian of transition from parametric to met-
ric coordinates [5];

0r
  is a unit vector of direction from a field source locus
with parametric coordinates  tytx ,  to a view point of
a free-space field with coordinates  zyx ,, .

For further calculations we describe representation of
distribution of a tangential to the surface vector quan-
tity a

  in terms of components  ytxt aa , of local basis
 yt,


xt  (Fig. 2). We set an origin point Q of the vector
through parametric coordinates  ytxt, creating Gaus-
sian coordinate system on the surface (S). In each point
Q the local coordinate system ytxt _,_  is defined,
which is characterized by the unit vectors nxt


,, yt .

They create local basis that enables one to describe
distribution of the vector quantity tangential to the sur-

face. The unit vectors of local basis are described using
of unit vectors  kji


,, of the rectangular cartesian co-

ordinate system  zyx ,, . Thus, by analogy with the

vector a
 the surface vector J

 or E
  can be described.

The expressions (5) give all necessary information to
formulate the boundary value problem on the surface
(S) for vector of electric field intensity on an arbitrary
ideally conductive surface presented in the parametric
manner. The surface current, which is characterized by

the density vector J
 , is arranged on a surface in such a

way to create of a component of the electrical field E


tangential to a surface that completely compensates

tangential component of an extraneous source field eE

 :

0eE E  
   .                 (10)

If eE

 is equal to zero on all surface, except a segment,
that can be named as a segment of excitation, we obtain
a classical way of introduction of an extraneous source
into the electromagnetic system [6]. As the surface is in
free space and its thickness is approached to zero, we
shall set and search the electrical field only on one side
of the surface.

However we should remark, that for a tangential
component of the electric field intensity in a view point
(P) with parametric surface coordinates  ytxt, we shall
search not directly on the surface (S), but at some small
distance d from it (fig. 2), what is normal to the surface
in this point [7]. It also will help to avoid a singularity,
when the view point of the field coincides with the
source locus.

Now, according to the boundary condition (10) for
the electric field intensity in regard to the surface com-
ponents, we shall proceed from vector equations (6)
and (7) to scalar equations circumscribing distribution
of tangential components of the electrical field on the
surface (S). We obtain the unknown quantities using
known unit vectors of local basis:

Fig. 2. Local vector basis for source locus and field
observation point.
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xtxt EE   
              (11)

ytyt EE   
 .              (12)

We can represent distribution of surface current density
using unit vectors of local basis record as follows:

      ytxt ytxtytJytxtxtJytxtJ   ,,,  , (13)
where  ytxtxtJ , and  ytxtytJ , are complex amplitudes
of components of the surface current density vector in
directions xt and yt accordingly.

As it is known, an application of Galerkin’s method
with boundary elements for solution of integral equa-
tions consists in transforming an integral equation to a
system of linear algebraic equations with subsequent
solution [1]. For this purpose it is necessary to select a
proper system of basis functions, which successfully
describe a quantity to be approximated and are conven-
ient for application in computational domain of a par-
ticular configuration.

Let's take rectangular piecewise linear basis func-
tions, which are ideally fitting for approximating a sur-
face current [8], and are convenient for application in
quadrangular computational domain and successfully
applied to practical calculations [9]. For the problem
under consideration it is an optimum selection, because
such functions allow to meet naturally boundary condi-
tions for the surface current, namely: a component,
normal to an edge of the surface is equal zero, has con-
tinuous derivative at the element, and provide a satis-
factory smoothness of the current approximation.
Incidentally we should remark, that the approximations
of larger orders increase essentially computing load, as
the number of quadruple integrals in a surface case
grows proportionally  21m , where m is the order of
approximation. The accuracy of the solution can be
adjusted by the number of boundary elements in the
computational area. Approximation of a surface charge
is naturally performed by step functions that corre-

spond to a derivatives of basis current functions. Also it
is necessary to note that, owing to a curvilinear surface
(in general case), the natural parametrization [4] should
be used for proper approximation of current distribu-
tion on the surface. Plots of these basis functions are
schematically shown in Fig. 3 for curvilinear surface
segment.

Now, having obtained character of discretization of
computational area on boundary elements and kind of
approximation of unknown current and charge distribu-
tions, we can write down equations (6) and (7), after
application of Galerkin’s process to them, in a matrix
form as follows:

     
           
          

Zxx Zxy Jx Ex
Zyx Zyy Jy Ey

, (14)
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Mxx Mxy Rx Jx Ex
Myx Myy Ry Jy Ey
Lx Ly Fr 0ρ

, (15)

where vectors Jx , Jy , ρ  are unknown complex am-
plitudes of current and charge distributions, to be de-
terminated in result of solving the system of matrix
equations by any appropriate way. The elements of
submatrixes, which characterize properties of the elec-
trodynamical object under research are evaluated
through quadruple and double integrals. The last are
not put here for their cumbersome.

It should be noted the problem of simulation of ex-
traneous excitation source is rather difficult and repre-
sents a particular area of investigation. The way we use
is a direct field representation of the source in computa-
tional domain. It gives necessary flexibility in simula-
tion of extraneous excitation and capability for such
investigation. However we shall take advantage of the
fact that for the analysis problem of the radiator an ex-
citation region has rather small electrical and geometri-
cal sizes as compared to the radiator. Therefore we
consider, that the simple enough representation of an
extraneous field along a narrow strip (Fig. 1) will not
introduce essential errors to calculations of the current
and charge distributions at all remaining surface of the
radiator. The mathematical formulation of the thesis,
taking into account (10), looks like this:

1,  in the middle of the narrow strip
0, otherwere

e
nxExt


 


 (16)

0e
nyEyt  . (17)

Thus, we have completely described the boundary
value problem for electrical field at any curvilinear
ideally conductive surface presented in the parametric
form. Now we can start numerical research in order to
estimate efficiency of the proposed EFIE system in
comparison with Harrington EFIE.

3. NUMERICAL SOLUTION
Numerical researches under obtained formulas have

been performed using the personal IBM-compatible

Fig. 3. Two-dimensional basis functions for ap-
proximation of current and charge distribu-
tion.
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computer with the processor AMD Phenom X4 9550
and volume of the RAM equal 8 Gb, under the control
of an operating system FreeBSD amd64 7.2-
RELEASE. Using the compiler gcc-4.2.1 and the pro-
gramming language C ++ four software packages crys-
tal_poc, crystal_har, crystal_tol1, crystal_tol2, realizing
accordingly algorithmizations of Pocklington and Har-
rington EFIE, set of equations (1) and (2) for the solu-
tion of the boundary value problem by Galerkin’s
method of adopted model of the surface (Fig. 1) have
bean written.

For realization of calculations we have taken two
versions of the radiator model consisting of two Fergu-
son’s patches joint at the middle by a narrow strip. The
first version of the radiator (model №1) represents two
rectangular flat sheets, (fig. 1, а). The second version
(model №2) consisted of two curved sheets like a pro-
peller, (fig. 1, b). In the first case, we can receive clas-
sical current distributions on the flat radiator and
possibility to be convinced in correctness of the solu-
tion, and in the second case - new results of investiga-
tions of such complicated structure as "propeller".

As one of the purposes of the calculations is a com-
parison methods realized in software packages crys-
tal_har and crystal_tol1, parameters will be identical to
all versions:
 field viewing distance from a surface d = 0.002 m;
 wavelength λ = 4 m;
 the number of discretization points of patch of the

axis xt_  Nx1 = 11;

 the number of discretization points of patch of the
axis xt_  Ny1 = 13.

 relative error of definite integrals calculation ERR =
0.00005.

Plots in Fig. 4 – 8 illustrate modulus’s of the calcu-
lated current and charge distributions. Dimensions of
abscissa and ordinate axes are in meters, dimension of a
current density vector  1mA , dimension of charge
density  2mC .

One can observe the calculated current distributions
using Harrington integral equation (6) and the set of
equations (7) almost completely coincide. However it
should be to noted that current distributions obtained
from the solution of the set of equations (7) mach more
smoother and therefore more exact than current distri-
bution obtained from the solution of Harrington EFIE.
Furthermore calculation of current distribution under
the program crystal_tol1 is 2.7 times faster for model
№1 and 2.8 times faster for model №2, than calculation
under the program crystal_har. In spite of all this a
rather good conformity in power balance and input im-
pedance obtained for model №1 and №2 calculated by
both programs take place.

Radiation characteristics of the structures are almost
the same in general to symmetrical vibrator antenna.
However if we transform the model № 2 in a symmet-

rical manner to obtain mirror symmetry plane (model
№3) we obtain interesting characteristics of axial ratio
that illustrated in polar diagram in Fig. 9. One can see
the mode №2 have almost uniform elliptical polariza-
tion but the model №2 have gaps in symmetrical plane.

For planar case of radiator structure (model №1) ax-
ial ratio approached to zero.

4. CONCLUSION
We propose a new approach to numerical solution of

a boundary value problem for curvilinear ideally con-
ductive surface. The feature of the approach is an alter-
native to classical Pocklington and Harrington integral
equations, namely a set of equations for boundary value
problem solution through electrodynamic potentials.

For the numerical solution of the boundary value
problem the parametric mapping technique for repre-
sentation of a computational domain, Galerkin’s
method with boundary elements, points matching
method for Lorentz calibration, and also piecewise lin-
ear basis functions for current approximation and
piecewise constant basis functions for charge approxi-
mation are used.

As an example of Ferguson-patch’s radiators we
have shown that the offered alternative mathematical
formulation of the boundary value problem allows to
predict current distributions much faster and more pre-
cisely than the classical Harrington integral equation.
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                                               a)                                                                                      b)

Fig. 4. Modulus of current distribution xtJ  calculated by crystal_har program.
a) model1
b) model2

                                               a)                                                                                      b)

Fig. 5. Modulus of current distribution xtJ  calculated by crystal_tol1 program.
a) model1
b) model2
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                                               a)                                                                                      b)

Fig. 6. Modulus of current distribution ytJ  calculated by crystal_har program.

a) model1
b) model2

                                               a)                                                                                      b)

Fig. 7. Modulus of current distribution ytJ  calculated by crystal_tol1 program.

a) model1
b) model2
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                                               a)                                                                                      b)

Fig. 8. Modulus of charge distribution   calculated by crystal_tol1 program.

a) model1
b) model2

                                               a)                                                                                      b)

Fig. 9. Modulus of axial ratio calculated by crystal_tol1 program.
a) model2 in range 0 – 0.1
b) model3 in range 0 – 0.01


