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Aim. There are many methods for modeling a regiona gravitational field in which the Legendre spherical
functions of integer degree of the real order are used. They relate, however, mainly to the region which form
represents a segment of the sphere. In addition, for their use, the input data must be transformed into a sphere segment
with its center at the north pole. The aim of this work is to find a system of functions that would have orthogonal
properties on an arbitrary spherical trapezium, as well asresearching the properties of such a system. Method. Based
on the Legendre spherica functions on the spherical segment, an orthogonal system of functions to an arbitrary
spherica trapezoid was developed. Such functions can not be explicitly stated, nor do they have recurring
relationships. Results. This article examines the associated Legandre spherical functions on the sphericd trapezium
where the functions are orthogonal and provide the formulas for defining the norms of these functions. The obtained
functions can be used to build regional models of the gravitational fields on the arbitrary spherical trapezium. The
orthogonality of the functions ensures a sustainable solution when determining the unknown model coefficients. To
model the regional gravitational field with high accuracy, it is necessary to grid the input data (define the
transformants of the geopotential), and then use the partial discrete orthogonality of these functions in longitudial
direction or full discrete orthogonality similar to the second Neumann’s method. This alows significant reduction of
computing time without any loss of accuracy, as the functions under study do not have any recursive relations and it
is required to use the decomposition into the hypergeometric series to define these functions. The scientific novelty
and practical significance. In this paper we first obtained a system of functions that were orthogonally consistent to
an arbitrary spherica trapezium. It can be used to construct a regiona gravitational field, aregional magnetic field,
and aso for high-precision interpolation or approximation tasks, for example the construction of a regional
ionosphere modd.
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Introduction

It is common to use the associated Legendre
spherical harmonics for building the gravitational
field of the Earth, as the harmonics are orthogonal
overall the sphere and obey the Laplace s equation
similar to the potential function [Hobson 1931]. In
addition, the associated Legendre spherical
harmonics can be decomposed into the finite
hypergeometric series that alow using simple
recursiverelations for their calculation. However, if
the measurements are conducted not on the whole
surface of the Earth but rather on a certain part of it
such asin aregional model, then it is impractical to
use the associated Legendre spherical harmonics
which lose their orthogonality and the solution
becomes unstable.

To solve this problem, in 1985, it was sugges-
ted to use the spherical cap harmonic analysis that
presupposes transformation of the input data into
the spherical cap and usage of the integer-order
Legendre spherical harmonics as the basic function

system but of the real degree [Haines 1985]. Such
functions obey the Laplace' s equation and form two
orthogonal systems of functions on the spherical
cap. However, in general these functions are not
orthogonal. They do not have recurrent relations
and they can be calculated by their decomposition
into the infinite hypergeometric series [Haines
1988]. In addition, it was suggested to use the
adjusted spherical harmonic analysis [De Santis
1992] that presupposes the transformation of the
coordinate system from the spherical cap into the
half sphere. In this case, it was proposed to use the
adjusted spherical  harmonic  analysis that
presupposes the transformation of the coordinate
system from the spherical cap into the hemisphere.
In this case, the eigenvalues of spherical functions
become integers. However, in spite of this, such
functions are not orthogonal but they form two
orthogonal systems of functions similar to the
functions on the spherical cap. Additionally, such
methods as translated origin spherical harmonic
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analysis [De Santis 1991], revised spherical cap
harmonic analysis [Thebault et al. 2006], and other
methods were suggested.

Aim

Computation of high-accuracy gravitational
fields require models of high order. For example,
the global models EGM 2008 and EIGEN-6C4 are
built to 2190 order [Pavlis et al. 2012]. Despite the
fact that the models of the regional fields of the
same accuracy will have a much lower maximum
order, it is recommended to use the orthogonal
system of functions as the basic system to abtain a
stable solution [De Santis & Torta 1997]. This
article aims at finding and investigating such
systems of functions on the spherical trapezium.

Method

Generally for modeling the gravitational fields
in the spherical coordinate system (r, q, |),
functions each of which depends only on one
coordinate

vV =1(r)>xg@)*() (1)
and which obey the Laplace's equation are used.
Laplace's equation in the latitudial direction is

represented as a differential equation of the second
order.

sinq xg®q) +cosq xg&q) +
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The Legendre spherical functions of the first
and second kind provide a solution for it. Since the
Legendre spherical functions of the second kind
diverge at the poles, the Legendre spherical
functions of the first kind are used and can be
represented with the hypergeometrical series as
follows [Hobson 1931; Hwang & Chen 1997]:

Pen =sin"(q - qmin)xF?n_ NN +m+11+m,
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wherek and mareinteger values, and q,,,, istheave-
rage value, namely g, = @min T )/ 2. IN its turn,
the values of n, will depend on k and m. They can be

calculated [Haines 1985; Hwang & Chen 1997] using
the following eguation if k-misan odd value:

®(n,,m,cosq,) =0, (7)
or using the equation:

P,.(cosg) =sin™q ><F§?n— n,n+m+

- 9049 ©)
a

where n and m depend on the imposed boundary
conditionsand g(q)° P,,(cosq) .

If to find such values of n on some segment of

the sphere q £q,, for which the following equation

will be true

+11+m,

dR.,(Cosd) _ @)
d(cosq) ’
aswell as
Pym(cosq,) =0, ®)

then the corresponding functions will form two
orthogonal systems of functions on the segment of
the sphere under study [Haines 1985; Haines 1988].

Fig. 1. Spherical trapezium

The following functions are examined on the

spherical  trapezium (fig.1) limited by the
Coordi nat% qmin’qma)(’I min’I max
1- Cos(g B qmin) 9, if i £q £qmn U
%]
2 (6)

n, cosq, .. ® (n,,m,cosq,) -
_(nk' m)l%(nk'lm’COSQO):O’ (8)
if k-mis an even value, where g, = Qs - Auin)/ 2

and B represents conditional hypergeometric
series [Hwang & Chen 1997]:

B(n,mm =F(m- n,m+n+],m+],l_7m). 9)
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From the equations (7) and (8), it becomes
obvious that the functions (6) are continuous as
they have the same value in the point g =q,..,-
When k-m is even, then (- )*"™ =1, and when k-m
isodd, then R, (0n) =0.

Results
Functions (6) form two orthogonal systems of
functions with respect to the weight

function,[sing-q,,) over the segment|d,,,:Clmen)
[Haines 1985; Smythe 1950]:

O mean

OPin @) Psn (@) SIN(Q - 0 ,y,)dg =0,

Qmin

(10)

where k1 s and k-m and ssm are both either even
or odd. A similar equation can be used for

[Ormearn Ol

Pon (@)Por (@) SN(G s - §)lg =0

O mean

According to the functions (6), if k-m is even,
then the functions B,, will be even on the segment

[Olin;Oec ] TEltiVElY tO q,,, and if smisodd, then
the functions R, will be odd on this segment
relatively toq,,,, . Integral of the product of an

even function and an odd one is equal to zero. In
conclusion, functions (6) are orthogonal on the

%gment [qmin ;qmax] :

(11)

> Ron(@) P (@)SIN(@o - [0 - G} =0. - (12)

Let us build the graph of the functions (6), for
example, on the segment [2\0°; \7\0°]. For this, the

value of N, when gq,=25° was calculated using

the formulas (7)—9). These values are provided in
the Table 1.

Table 1
Valuesof n (m) when g, =25°
k/m 0 1 2 3
0 0.000
1 5.004 3.806
2 8.296 8.296 6.632
3 12.148 11.743 11.324 9.318

Fig. 2 shows the graph of the functions (6)
when m=0 and k = 0,3.

Let us examine the following functions on the
segment [I,;1,]:

-1,
| —I
- ﬂ
' o (13)

_| @b
where mis integer value It is easy to illustrate that
such functions build an orthogonal system of

functions on the segment [I ;! 2] :

he = cosQZp mI

I ]
osing J@n% I =0y
- - 1@ '|'
|2
dsing _mosaez | 1 9 _oy (14)
Iy 2" - Ilg .|.
_mosa% I 0I
e 2" - 1@ b
wherem?® 1.

Fig. 3 shows a graph of functions (13) when
m= ﬁ on the segment [3\0°; \5\07].
To summarize the above-mentioned, the

following functions are obtained on the spherical
trapezium that is limited by the coordinates

qmin’qma)(’I min’I max:

Rul@1)= Ry (cos)cosgomy -
N I“Z’ (15)
Sa(@.1) = (cosq)sn<;2pm| L

Equations (12) and (14) show that functions (15)
areorthogonal on the spherical trapezium, namely:

@Rﬂm(q )R, (@, )ds =0j
Oy if stnorrlm

@Snm(q,l )S, (@l )ds = |
®R,.@.1)S, (.l )ds =0

while an element of a sphere and integration is
carried out over the spherical trapezium.
Fig. 4 shows a graph of afunction R,(q.l ).
Functions (6) change their sign for k-mtimesin
theinterval q,,, £9 £0q,,, Whereas functions (13)

have 2mzeroes in the interval |, £l £1 .
Therefore, functions (15) divide the spherical
trapezium into parts where they are aternatdy
positive and negative similar to a chessboard. Fig. 5
shows the geometrical representation of the
function R;(g.l ).

(16)

in any case,
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Fig. 2. Legendre spherical functions (6) on the segment [2\0°; \7\0°]
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Fig. 3. Functions that are orthogonal on the segment [3\0°; \5\0°]

Fig. 4. Graph of a function R,(q,! )40°

Fig. 5. Zeroes of the function R;(q,! )
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Norm of the functions (6) can be calculated using the following formula [Haines 1985; Hwang 1993]:
a "
- 0\ : — (COqu '1) T[ 4 nk(m (0&]0) u
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y
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Y
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0 2n +1 1 d(cosqg i (17)
y
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km oan((m)m( 0sq)singdq 2n +1 () (cosq, )ﬂngwu b

. . 7. .
Expressions for calculating %ank(m)m(cosqo)H

4d
e ”k(m’m(cosq(’)ﬂ are presented in [Hwang
fng d(cosq)

& Chen 1997, Macdonald 1900].

On the other hand, it is easy to represent the
norm of functions (13) asfollows:

—ocosz%pm LES N
'|1ﬂ

= osm EEZprr‘ -l _dl B
- 19
The expr&smn for calculatlng the normalized
functions (15) is the following:

I 1

(18)

_Ra(@.)
Rl ) =" 8e, ”
S (@)= Sn@)
Sa(al)="d

Functions R,(@,/) and S (@,]) form an

orthonormalized system of functions on the

spherical trapezium. Practically any function V

defined on the spherical trapezium can be

decomposed into series using the functions (19).
Thefunction

V=8 8 8.Re@ ) +0,5.@.1 ),

k=0 m=0

isused (20)
where g, and b, areunknown coefficients.

The scientific novelty
and practical significance

An orthogonal system of functions on an
arbitrary spherical trapezium is proposed. It can
be used to congtruct a model of the regional
gravitational field having high resolution.

Conclusions

This article suggests using the orthogonal
functions on the spherical trapezium for modeling
the regional gravitational field. The algorithm for
this method is the following:

1. Calculate coordinates of vertices of the
spherical trapezium qmimqmax’I min’I max where
the input data is known.

2. Define the midpoint of the trapezium and
find the n eigenvalues.

3. Calculate a norm of functions under study.

4. Determine the unknown coefficients of the
model using the method of least squares.

It is worth mentioning that for building the
models of high order, it is recommended to place
the input data on a certain grid [ Sneeuw 1994]. This
not only reduces the time required for accurate
calculations, but also uses the discrete orthogonality
of the functions during calculation and rotation of a
matrix of normal equations [Marchenko & Dzhu-
man 2015].
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MOJIEJIIOBAHHSI TPABITAIIIMHOTO MOJISA 3EMJII
3 BAKOPUCTAHHSIM COEPUYHUX ®YHKIINA

Merta. IcHye OaraTto METOJiB MOENIOBAHHS PEriOHANBHOTO TPaBITAIIHOrO MONS, B SIKMX BUKOPUCTOBYIOTH
cepuuni QyHkuii JlexxaHapa wijgoro CTymeHs, IpoTe AilicHOro nopsaky. [Ipore BOHHM CTOCYIOTHCS TEpEBaYKHO
perioHy, sikuii 3a (GopMoro CTaHOBUTH cerMeHT cdepu. Kpim Toro, s iX BHUKOpUCTaHHS HOTPIOHO BXiAHI AaHi
TpaHc(hOpMyBaTH Ha CEIMEHT C(epd 3 IIEHTPOM Ha MiBHIYHOMY Toiroci. MeTor Iiiei poOOTH € 3HaXOKEHHS
cucreMu (QYHKIIN, ska O Maja OpTOrOHAJNbHI BIACTUBOCTI Ha JOBIIBHIN chepUUHIN Tparelii, a TaKOXK JAOCIIIKSHHS
BJIacTHBOCTeH Takoi cucremu. Metoamka. BiasiBmim 3a ocHoBy cdepuuni ¢ynkuii Jlexanapa Ha chepruuHOMY
CErMEHTI, po3pobJIeHo cucteMy (YHKIIH, OpTOroHaJ bHY Ha JOBUIBHIN chepuuniil Tpanemnii. Taki ¢pyHKuii He MOXkHa
3a]aTh B SIBHOMY BWIVISZII, @ TAKO)K BOHM HE MAlOTh PEKYPEHTHHX CIIiBBigHOLIEHb. Pe3yasTaTn. PosrisiHyTO
npueaHani chepryni Gpynkuii Jlexxanapa Ha chepuuHii Tparenii, ki MalOTh BIACTUBICTh OPTONOHAIBHOCTI Y IIbOMY
perioni. HaBeneno hopmynu uist 3HaX0DkeHHS HOpMU TakuxX QyHKuii. OTprMaHi QyHKIIT MO)KHA BUKOPHUCTOBYBATH
Juisi TIOOYJOBU PETiOHAaJbHUX MOJENeH TrpaBiTalliiHUX MONIB Ha JOBUIBHIA cdepuuHiii Tpaneuii. OproroHanbHa
BJIACTHBICTh JOCIIKYBaHUX (YHKIH 3a0e3nedye CTiikuil po3B’ 130K i1 4ac 3HAXOMKEHHsI HEBIJIOMUX KOe(II[iEHTIB
Mojeri. il BUCOKOTOUHOTO MOJIENIOBAHHS PEriOHANBHOIO TPaBITAIIHOTO MOJIsI HEOOXiAHO MeperpilyBaTH BXiIHi
naHi (BUMipsiHI TpaHC(OPMAHTH T'EOMOTEHIlialy) Ha MEBHUM TPif, i MCAs MOr0 MOKHA BHKOPHUCTATH YaCTKOBY
JIUCKPETHY OPTOTOHANIBHICTh JaHWX (yHKLiH 1O MOBroti abo MOBHY AMCKPETHY OpTOrOHAJBHICTH IMOAIOHO IO
npyroro meroxy Hefimana. lle mae 3Mory CyTTe€BO CKOPOTHTH 4ac oO4YMCIIeHb 0€3 BTpPaTH TOYHOCTI, aJikKe
JoCIipKyBaHl (yHKIIT He MaloTh PEKypCUBHHX CITIBBIIHOIIEHB 1 JUIS TX 3HaXO/PKEHHS! HEOOX1HO BUKOPHCTOBYBATH
poskiaz y rinepreomerpuyHuii psa. HaykoBa HOBH3HA i NpaKTHYHA 3HAYYIICTE. V' 1iii poOOTI BIEpILIE OTPHUMAHO
cucteMy (YHKIIiH, OpTOroHabHY Ha JOBiNbHIH chepuuniit Tpamemii. [i MoxkHa BHKOpHCTOBYBaTH IS TOGYIOBH
pETIOHaNIbHOTO TPaBITALIHOIO TOJS, PErioHANIFHOIO MAarHITHOTO IOJsl, a TaKoXK ISl 3aJad BUCOKOTOYHOI
IHTepIOJIAIii a00 anmpoKCUMAIlii, HAITPHUKIIa OOYIOBH PerioHaIBLHOI MOJIEi ioHOC(h epH.

Kniouosi crosa: chepuuni pyHkii, chepuyuHa Tparneris, OpTOroHaJIbHICTb.
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