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The Curie temperature of two-component amorphous ferromagnet is found using
the expansion of the free energy in powers of order parameter. For the model with liquid-
type disorder introduced via hard spheres structure factor the explicit expression for the
concentration dependence of ferromagnetic ordering temperature is obtained.
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1. INTRODUCTION

Theoretical investigations of amorphous magnets mainly were performed during study of
thermodynamical and dynamical properties of one-component magnetic systems [1-4].
Nevertheless the great number of experimental investigations of physical properties of amorphous
magnets were devoted to the systems, containing two or more kinds of magnetic atoms [1]. So the
problem of theoretical study of such systems arises. The present paper is devoted to theoretical
determination of Curie temperature of amorphous two-component magnet and to investigation of
its concentration dependence.

2. Theory

The system of magnetic atoms of M sorts with Na atoms of sort a, which are randomly
distributed in volume V, is considered. The Heisenberg Hamiltonian [5], generalized on the case
of many-component system was considered as the effective Hamiltonian causing magnetic
properties.

With the help of functional integration method magnetic part of the amorphous many-
component magnet free energy was calculated [6] in the non-interacting spin and structure
fluctuations approximation:
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where F, , is the part of free energy in the molecular field approximation [6], J; is the exchange

integral Fourier coefficient, s, is the spin value of atom of sort a, k is the wave vector. B=1/T isthe
reciprocal temperature in energy units. Matrix
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and
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where histhe .external magnetic field. And S¢" (k) arethe partial structure factores.

Putting the free energy (1) into series over the powers of the order parameters <(p(f’“> we

av

get the next expression for the free energy in zero external field h=0:
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where the matrix A7 (0) is diagonal with the elements (4), when y, = 0
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The elements of matrix 4 are:

A = (05 ~3oMP(0)-——— 3 MO (OMP (O ()<

N Nb k=0

x[sza“(k) ot ﬁzm )t () (10)

> MM P O ),

“12/N aNb kz0
where the matrix of screened exchange interactionsis
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From the conditions of stationary of the free energy (8) we come to the system of linear
uniform equations for the quantities <qo(;‘“>m (order parameters), in which coefficients are matrix

elements (o?(i/ 246, 2) - From the condition of non-triviality of solution of this system we come to

a

the condition
det(6,4) =0 (12

which is the equation for the critical temperature. This equation has M solutions, which determine
the temperatutes of transition to the different types of magnetic ordering. First of al creates the
ordering with the highest temperature of transition. And this temperature- we shall take into
account, determining the Curie temperature of amorphous ferromagnet. Our equation (12) for the
Curie temperature is nonlinear. Throwing off the integral items we get the equation for the Curie
temperature in the molecular field approximation:

det (i ~ 8, M<2>(o)) =0 (13)

Let us determine the Curie temperature for two-sort amorphous magnetic system. From
the equation (13) we got next solution for the Curie temperatureinthemf a
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In the expression (14) the Curie temperature is determined in units of Curie temperaturein m
f a of one-sort system. The Curie temperature, that is obtained in the m f a, doesn’t take into
account the fluctuations of structure and magnetic moment.

For the investigation of influence of structure disorder of amorphous magnet on the critical
temperature one has to make calculation in the higher approximation.

S =

(15)

3. RESULTSAND CONCLUSIONS.
In the case of two-component system with the model exchange integral J{" = JJ" J;, (J] is

dependent on atomic sort function, J; =1) and structure factor S%'(k) in the substitution
approximation the expression for the Curie temperature (using the iteration method) reads:
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When the concentration of one component is equal to zero (x=0 or x=1) the equailon (16a)
gives the known result [4] for one-component amorphous ferromagnet. Considering structure factor
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S (k)to be known and using numerical calculaions one can due to (16)-(20) investigate
concentration dependence of two-component amorphous ferromagnet Curie temperature in the case of
different values of spins, exchange interactions and magnetic atoms densities. Amorphous body
structure is well represented by the structure of the system of hard spheres, especialy in the region,
where S (k) has the first maximum. This region gives the main contribution into integras over wave
vectors in  (18ab,cd). Taking for the exchange integral the often used form
J(r) = J* exp|-o(r / 6)], where & is hard sphere diameter, o is numerica parameter, one can
analyticaly calculate integras in (18ab,c,d) and reduce them to sums of Laplace-transforms of the
magnetic atoms pair distribution function. When the atoms are considered to be hard spheres, then the
Percus-Y evick theory [7,8] gives anaytical expression for the Laplace-transformes. Finally we find:
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n is the packing parameter. For A<O expressions (21a,b,c,d) are valid as well, but in thiscase it is
necessary to write G(p) in explicit form for complex parameter p.

The numerical calculations of the Curie temperature in the random phase approximation, that
takes into account the structural and magnetic fluctuations for two-sort amorphous magnets, show that
the critical concentration x_ of one of magnetic components (Tf (x) = O) exists when the parameter

o increases (it corresponds to decrease of effective radious of exchange interaction in the model

exchange integral). The account of fluctuations at the decrease of o' leads to existance of bound
magnetic atoms packing density. Phase transition into ferromagnet phase is absent below this value.
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Silicon TCD (Thermal Conductivity Detector, katarometer) chip analytical model,
elements of the design and technology are presented. Detector was designed for the uTAS
(Micro Total Analysis System) application to recognize the composition of the different
gas mixtures. TCD consists of the two pieces : glass plate and silicon chip. Two parallel
flow channels 15 000 um long, 400 um wide and 50 um deep were etched in the silicon
chip and milled in the glass plate. Some of resistors were designed to act as a heaters and
the other ones as a thermo resistors. Composition changes of the mixture flowing
throughout the channe cause the temperature distribution changes and thermo resistors
electrical response. Distance between the heaters and thermo resistors is of the great
importance to the TCD sensitivity. VLSl silicon technology was applied to reduce
geometrical dimensions and micromechanical technology to over-hange resistors across
the flow channels to reduce thermal capacity and heat loses to the bulk and environment.

ANALYTICAL MODEL

Analytical model [1,2,3] is based on the heat transfer from the heater to the gas stream and
environment. It can be expressed by the following second order differential equation (1). This
model can be easily applied for the fast calculations even on the standard PC unit. One can
estimate every individual parameter influence on the temperature distribution along the channdl.
Lost power (Q) from the heater to the TCD bulk and environment, caused by the resistor paths
thermal conduction, were taken into account, too.



