Chavdar Roumenin¹, Konstantin Dimitrov²

Institute of Control and System Research at Bulgaria Academy of Sciences, 1113 Sofia, "Acad. G. Bonchev" str., Bl.2, POBox 79, Bulgaria tel/fax: (+359 2) 737 822, ¹e-mail: <u>roumenin@bas.bg</u>, ²e-mail: <u>kdimitrov@iusi.bas.bg</u>

MICROSYSTEM FOR 2-D MAGNETIC-FIELD MEASUREMENT

Keywords: parallel-field Hall microsensor, microsystem for 2-D measurement of magnetic field.

© Chavdar Roumenin, Konstantin Dimitrov, 2002

A new silicon microsystem for simultaneous and independent measurement of the in-plane B_x and B_y components of the magnetic field vector B has been designed, fabricated and tested. It consists of two functionally integrated triple parallel-field Hall sensors with mutually perpendicular orientation. The obtained characteristics of this 2-D mag-netometer are very promising

1. INTRODUCTION

The well known magnetic sensors in general detect one component (1-D) of the vector **B**. However, there are many applications in the field of microsystems where the simultaneous and independent registration of more than 1-D component is needed [1-6]. The magnetic devices for multidimensional sensing are based on magnetodiodes [1, 3], magnetotransistors [1, 2, 4, 5] and orthogonal and parallel-field Hall transducers [1, 2, 7-9]. The integration of more than one sensor function in the active region of the silicon substrate is a novel trend in the measurement of the strength and direction of the individual orthogonal fields B_x , B_y and B_z , the temperature T of the environment and the visible light Φ , etc [1, 2]. This very prospective functional approach guarantees the following advantages: an extremely high spatial resolution; improved orthogonality; the position of the 3-D sensor with respect to the magnetic source is not as critical as in case of 1-D device; optimum electrical, thermal and processing compatibility of the B_x , B_y and B_z channels, etc. In our view the 2-D and 3-D microsystems for magnetic field based on the Hall effect principle is preferable. This phenomenon is well defined and predicable with clear galvanomagnetic behavior. The paper describe a new fully integrated 2-D silicon microsystem for magnetic field, using the parallel-field Hall effect. Its advantages are on-line measurement by separate differential outputs the in-plane vector components B_x and B_z ; reduced cross-sensitivity and noise; suitable transducer efficiency for many practical applications.

2. DEVICE STRUCTURE AND OPERATION

Figure1 shows the novel functionally integrated 2-D silicon vector microsystem. It consists two triple parallel-field Hall sensors [7] replaced each other on the 90⁰ in-plane *x*-*y*. The device contains a central square current contact C₀ and one contact on each side C₁-C₄ symmetrically situated around C₀. The two differential outputs generate $V_H(B_x)$ and $V_H(B_y)$ Hall voltages, proportionally to the *x*- and *y*- components of the magnetic field. The absolute value of the magnetic vector **B** is given by the relation $|\mathbf{B}| = \sqrt{B_x^2 + B_y^2}$, [1].

Figure 1. 2-D microsystem for the in-plane B_x and B_y magnetic-field components

Figure 2. The curvilinear trajectories of the current components $I_{C0,1}$ and $I_{C0,2}$ determining the channel operations of the new Hall 2-D magnetometer.

8

The action of the new 2-D microsensor is the following. For example, for B_x direction the trajectory of the equal in value currents $I_{C0,1}$ and $I_{C0,2}$ to the left and to the right of contact C_0 are curvilinear- they begin and end to the upper surface of the chip, Fig. 2. Therefore the origin of the two Hall effects is related to the carrier Lorenz deflections in fields B_x and B_y caused by the horizontal v_x and vertical v_z components of the velocity v, Fig.2. The registration of the respective Hall voltages $V_H(B_x)$ and $V_H(B_y)$ is carried out by the contacts C_1 and C_2 for the component B_x and C_3 and C_4 - for B_y , Fig. 1. The confinement of the supply current by a deep p- ring, as is shown on Fig. 1, will be enhanced the magnetosensitivities of the two channels and reduced their cross-sensitivity.

Some of the device parameters are: the *n*-Si substrate with thickness ~300 μ m is with bulk resistivity 7.5 Ω .cm (n₀ ~ 10⁻¹⁵ cm⁻³), the heavely doped *n*⁺- regions are with concentration 10¹⁹ cm⁻³, the size of the contacts is as follow: C₀- 150 x 150 μ m, C₁-C₄ are 20 x 150 μ m; the distance *d* of the contacts C₁-C₄ to the central contact C₀ is 100 μ m.

The experiments were carried out in the range of magnetic fields $-1.0 \text{ T} \le B \le +1.0 \text{ T}$.

3. EXPERIMENTAL RESULTS

Figure 3 shows the output characteristics $V_H(B_x)$ for the *x*- channel of the vector magnetometer (for the *y*- channel they are the same), where the inevitable offset of the channels is nullified in advance. The output voltages $V_H(B_x)$ and $V_H(B_y)$ exhibit a linear and odd de-pendence on the magnetic field, their non- linearity factor (NL) in the range of $-100 \text{ mT} \le B \le 100 \text{ mT}$ being about 0.4 % and in the interval $-1 \text{ T} \le B \le 1 \text{ T}$ the NL does not exceed 1 %. The temperature coefficient of magnetosensitivity for the two channels is 0.15 %/⁰C.

Figure 3. Output characteristics $V_H(B_x)$ at T=300 K for the x- channel of the 2-D microsystem at different values of the supply current, $R_1=R_2=R_3=R_4=10$ k Ω .

Figure 4 shows the angle diagram $V_H(\varphi)$ for the one of the output channels at B = 0.65 T and $I_{C0}/2 = 10$ mA. The obtained characteristic presents cosinusoidal behaviour of the φ angle.

The measurement of the cross-sensitivity at current $I_{C0} = \text{const.}$, after nullification of the two offsets we achieved, using the following procedure. The first step is an experimental determination of the two channels magnetosensitivities at Hall-voltage mode $V_H(B_x)$ and $V_H(B_y)$ of operation. The next step is applying a homogeneous variable field *B* parallel to one of the axis, for example B_x -axis. The other output (parasitic) signal from the *y*- channel is registered simultaneously. Then the dependence of the relative change of the parasitic signal from the *y*- direction $V_{Hy}(B_x)/V_{Hy}(B_y)$ is plotted in % versus the magnetic induction B_x applied to the *x*- axis. The procedure described above is repeated for the remaining directions. In our case, because of the device symmetry, the relation $S_{xy} = S_{yx}$ and $S_{xz} = S_{yz}$ between respective cross-sensitivity is valid.

Figure 4. Angle dependence of the output signal $V_H(\mathbf{B}_y)$ at T = 300 K

Figure 5. The cross-sensitivity between the x- and y- channels for $I_{C0} = 10$ mA, T = 300 K

On Fig. 5 is presented the cross-sensitivity (CS) of the 2-D microsystem. The CS is close to a square function of the induction B. This prove the dominant role of the geometrical magnetoresistance in CS.

In Fig. 6 is shown measured noise power spectral density for one of the sensor channels, of the microsystem of Fig. 1, in function of frequency f at magnetic field B = 0. There is established that the behavior of this important sensor parameter at low frequencies $f \le 10^3$ - 10^4 Hz doesn't differentiate from the expected one, i.e. the 1/f noise (Flicker noise).

Figure 6. Noise power spectral density for one of the sensor channels. As a parameter is chosen the supply current $I_{C0}/2$

Table 1

Important parameters of the vector microsystem

N₂	Parameter	Units	Values
1	Output		
	<i>x</i> - channel	differential	
	<i>y</i> - channel	differential	
2	Magnetosensitivity (S_A) for the two channels	mv/T	$100 (at I_s = 10 mA)$
3	Linearity range	Т	±1
4	Non-linearity (NL)	%	≤ 1 (in the range $B \leq \pm 1$)
5	Temperature coefficient of magnetosensitivity	%/°C	0.15
	(TC)		
6	Min. detected induction (B_{min})	μT	50
7	Offset (without compensation)	mT	7
8	Input resistance (R _{in})	Ω	350
9	Supply current (I)	mA	≤ 15
10	Power consumption (W)	mW	≤ 30
11	Cross-sensitivity	%	0.7 at $B = 0.4$ T
12	Dimensions	μm	390 x 390 x 300

The grow up of the noise level with the increasing of the supply current I_0 is due to the increasing role of the carriers scattering, because of the higher velocity in the electric field. On Table 1 are presented the important parameters of the new 2-D vector microsystem.

4. CONCLUSION

The proposed one-chip 2-D Hall microsystem measures on-line simultaneously and independently with high spatial resolution, accuracy and stability the in-plane components of the magnetic field vector B. The obtained results are very promising for applications in the automation, contactless instruments, angular position transducers etc.

REFERENCES

[1] Ch. Roumenin, "Solid State Magnetic Sensors", ELSEVIER, Amsterdam, 1994.

[2] Ch. Roumenin, "Magnetic sensors continue to advance towards perfection", Invited paper, Sensors and Actuators, A 46-47, 1995, pp. 273-279.

[3] Ch. Roumenin, "2-D magnetodiode sensors based on SOS technology", Sensors and Actuators, A 54, 1996, pp. 564-566.

[4] C. Riccobene, K. Gartner, G. Wachutka, H. Baltes and W. Fischer, "Full three- dimensional numerical analysis of multi-collector magnetotransistors with directional sensitivity", Sensors and Actuators, A 46-47, 1995, pp. 289-293.

[5] S. Kordic, "Integrated 3-D magnetic sensor based on an n-p-n transistor", IEEE Trans. Electron Devices Lett., EDL-7, 1986, pp. 196-198.

[6] A. Andonova, Ch. Roumenin, "MS reliability estimation features", Proc. of the Symp. on DTIP of MEMS/MOEMS, Paris, France, 2000, pp. 492-497.

[7] Ch. Roumenin, "Paralell- field Hall microsensors"- An overview, Sensors and Actuators, A 30, 1992, pp. 77-87.

[8] Ch. Roumenin, K. Dimitrov and A. Ivanov, "Novel integrated 3-D silicon Hall Magnetometer", Proceedings of the EUROSENSORS XIV Conf., 27-30 August 2000; Copenhagen, Danmark, ISBN 87-89935-50-0, 2000, pp. 759-761.

[9] Ch. Roumenin, K. Dimitrov and A. Ivanov, "Integrated vector sensor and magnetic compass using a novel 3-D Hall structure", Sensor and Actuators, A 92, 2001, pp. 119-122.