Chem. Chem. Technol., 2017, Vol. 11, No. 4, pp. 415-419 Chemistry

PHASE RELATIONS IN THE TI₅Te₃-TI₉SbTe₆-TI₉TbTe₆ SYSTEM

Samira Imamaliyeva^{1, *} , Turan Gasanly², Imameddin Amiraslanov³, Mahammad Babanly¹

https://doi.org/10.23939/chcht11.04.415

Abstract. Phase relations in the Tl₅Te₃-Tl₉SbTe₆-Tl₉TbTe₆ system were experimentally studied by DTA, XRD technique and microhardness measurements. Several isopleth sections and isothermal section at 760 K, as well as projections of the liquidus and solidus surfaces were constructed. It is determined that the system is characterized by an unlimited solubility of components in the solid state.

Keywords: thallium-therbium tellurides, thalliumantimony tellurides, phase relations, projections of the liquidus, solid solutions, crystal structure.

1. Introduction

Chalcogenides of heavy *p*-elements are essential due to their important properties like thermoelectric, optical, *etc*. [1-3]. Moreover, some of such compounds have attracted scientific and technological interest as topological insulators [4, 5].

Rare earth elements tellurides are important materials for the fabrication of microbatteries, multilayer high-efficiency solar cells, *etc*. [6]. Moreover, *ab-initio* calculations [7] shown that LaBiTe₃ is a topological insulator and exhibits thermoelectric properties [8].

Thallium subtelluride, Tl_5Te_3 , due to features of its crystal structure is suitable "matrix" for fabrication of novel complex materials. This compound crystallizes in tetragonal structure [9] (Sp.gr.I4/mcm, a=8.930; c=12.598 Å) with four formula units per unit cell (Fig. 1). The basic structural component of Tl_5Te_3 compound is octahedron with a thallium atom, Tl(2), in its center. These octahedra connected by vertices form a frame

Compounds of type (I) and (II) were detected during the experimental phase relations investigations of respective ternary systems [10-13]. These materials have good thermoelectric performance, whereas Tl_9BiTe_6 was found to have the highest ZT value (ZT =1.2 at 500 K) [14-16]. Furthermore, authors [17] report the discovery of Dirac-like surface states in $[Tl_4](Tl_{1-x}Sn_x)Te_3$ and Tl_5Te_3 .

Earlier we presented new thallium lanthanide tellurides with composition Tl_9LnTe_6 (Ln-Ce, Nd, Sm, Gd, Tm, Tb), which were found to be ternary substitution variant of Tl_5Te_3 [18-20]. Moreover, it was shown that ytterbium does not form the compound Tl_9YbTe_6 [20, 21]. Latter, H. Kleinke *et al.* determined the crystal structure as well as magnetic and thermoelectric properties for a number of Tl_9LnTe_6 -type compounds [22-25].

In order to obtain solid solutions based on Tl_5Te_3 -potential thermoelectric material, we investigated phase equilibria of a number of systems including Tl_5Te_3 compound or its structural analogues [26-28]. We found that these systems are characterized by formation of continuous solid solutions.

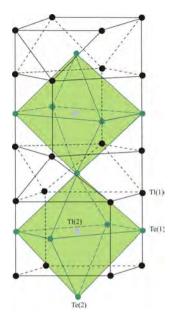
The investigation performed in the present paper is aimed to study phase relations in the Tl_5Te_3 - Tl_9SbTe_6 - Tl_9TbTe_6 system.

Starting compounds are well known materials. Tl₅Te₃ and Tl₉SbTe₆ melt congruently at 723 K [29] and 800 K [10] while Tl₉TbTe₆ melts with decomposition by the peritectic reaction at 780 K [30]. The lattice parameters of Tl₉TbTe₆ and Tl₉SbTe₆ are the following: a = 8.871, c = 12.973, z = 2 [30]; a = 8.829, c = 13.001 Å, z = 2 [31].

According to the phase diagram of the Tl_5Te_3 - Tl_9SbTe_6 system, this system is characterized by formation of continuous solid solution field with Tl_5Te_3 -type structure [10].

Tl₄Te₁₂, or (TlTe₃)₄. The other 16 thallium atoms, Tl(1) link octahedra along the c axis and form a unit cell Tl₁₆(TlTe₃)₄. B³⁺ (B³⁺-Sb, Bi) substitution for half of the Tl(2) atoms, resulting in the compounds Tl₉BTe₆ or Tl₁₆[(Tl¹⁺_{0.5}B³⁺_{0.5})Te₃]₄ (I), while the replacement of all these thallium atoms by cations A²⁺ (A²⁺-Sn, Pb) is leading to formation of Tl₄ATe₃ or Tl₁₆[A²⁺Te₃]₄ (II).

¹ Institute of Catalysis and Inorganic Chemistry named after acad. M. Nagiyev, Azerbaijan National Academy of Sciences, 113 H.Javid Ave., Az-1143, Baku, Azerbaijan


² Baku State University, 23 Z.Khalilov St., 23, Az-1148, Baku, Azerbaijan

³ Institute of Physics, Azerbaijan National Academy of Sciences,

¹³¹ H.Javid Ave., Az1143, Baku, Azerbaijan

^{*} samira9597a@gmail.com

[©] Imamaliyeva S., Gasanly T., Amiraslanov I., Babanly M., 2017

Fig. 1. Basic structural component of Tl₅Te₃ compound

2. Experimental

2.1. Materials and Syntheses

Thallium (granules, 99.999 %), antimony (granules, 99.999 %), terbium (powder, 99.9 %), and tellurium (broken ingots 99.999 %) were used as starting components. The surface of thallium was covered by oxide film, which was removed before use.

These starting materials were weighed in proper molar ratio of the corresponding compound and put into silica tubes of about 20 cm in length and then were sealed under a vacuum of 10^{-2} Pa.

The synthesis of Tl_5Te_3 and Tl_9SbTe_6 compounds was carried out by heating in one-zone electric furnace at the $30\text{-}50^0$ above the melting point of the compounds followed by cooling in the switched-off furnace.

Taking into account the results of [30, 32], the obtained intermediate ingot of Tl_9TbTe_6 was carefully powdered in agate mortar, pressed into pellet and annealed at 750 K within \sim 1000 h. In order to avoid reaction between the terbium and the silica ampoule, a thin layer of carbon was deposited on the inner side of quartz tube by the pyrolysis of acetone.

The purity of the synthesized starting compounds was checked by the differential thermal analysis (DTA) and X-ray diffraction (XRD).

Only one endothermic effect was observed for Tl_5Te_3 (723 K) and Tl_9SbTe_6 (790 K) while two effects for Tl_9TbTe_6 (780 and 1110 K) showed the completion of the synthesis.

Powder XRD pattern of the Tl_9SbTe_6 and Tl_9TbTe_6 were same as that of Tl_5Te_3 . Their unit cell lattice parameters were practically equal with the [30, 31] (see Table).

The alloys of the Tl_5Te_3 - Tl_9SbTe_6 - Tl_9TbTe_6 system were prepared by melting from pre-synthesized compounds in evacuated silica ampoules. Taking into account the fact that an equilibrium state could not be obtained even after the long-time (1000 h) annealing [30, 32], after synthesis the samples were powdered, mixed, pressed into pellets and annealed at 700 K for \sim 800 h.

2.2. Methods

The samples were analyzed by X-ray diffraction and differential thermal analysis as well as microhardness measurements.

The XRD measurements of powdered specimen were recorded using a Bruker D8 diffractometer utilizing CuK_{α} radiation within $2\theta=10$ – 70° . DTA was performed using a NETZSCH 404 F1 Pegasus differential scanning calorimeter within room temperature and ~1400 K at the heating rate of $10 \text{ K} \cdot \text{min}^{-1}$. Microhardness measurements were done with a microhardnesmeter PMT-3, the typical loading being 20 g.

3. Results and Discussion

The combined analysis of experimental and literature data [10, 29, 30] enabled to construct the self-consistent diagram of the phase relations in the Tl_5Te_3 - Tl_9BiTe_6 - Tl_9TbTe_6 system (Table, Figs. 2-7).

The equilibrium phase diagrams of the 2Tl₅Te₃-Tl₉TbTe₆ and Tl₉SbTe₆-Tl₉TbTe₆ system (Figs. 2a and 3a) are characterized by the formation of a continuous solid solutions (*d*) with Tl₅Te₃-type structure. However, these systems are non-quasi-binary due to peritectic melting of Tl₉TbTe₆. This leads to crystallization of unknown infusible X phase (presumably TlTbTe₂) in a wide composition range and formation of L+X and L+X+*d* phase areas. However, these areas are not experimentally fixed due to narrow temperature interval and shown by dashed line.

Microhardness measurements are in good agreement with *T-x* phase diagram (Figs. 2b and 3b): curves have a flat maximum (Figs. 2b and 3b), which is typical for systems with continuous solid solutions.

The formation of continuous solid solutions in the studied systems is confirmed by XRD (Fig. 4). Apparently, powder diffraction patterns of starting compounds and intermediate alloys were same as that of Tl₅Te₃ with slight reflections displacement from one compound to another. The lattice parameters of solid solutions obey the Vegard's law, *i.e.* depend linearly on composition.

Phase	Temperature of melting, K	Microhardness, MPa	Parameters of tetragonal lattice, Å	
			а	С
Tl ₅ Te ₃	723	1130	8.930	12.598
$Tl_{9.9}Tb_{0.1}Te_{6}$	730	_	-	_
$Tl_{9.8}Tb_{0.2}Te_6$	735–742	1160	8.918	12.681
$Tl_{9.6}Tb_{0.4}Te_6$	740–756	1140	8.907	12.761
$Tl_{9.4}Tb_{0.6}Te_6$	750–763	1120	8.895	12.842
$Tl_{9.2}Tb_{0.8}Te_6$	763–775; 1045	1070	8.883	12.919
$Tl_{9.1}Tb_{0.9}Te_6$	770–778	_	-	_
Tl ₉ TbTe ₆	780; 1110	1100	8.871(9)	12.973(3)
$Tl_9Sb_{0,1}Tb_{0,9}Te_6$	781; 1080	_	-	-
$Tl_9Sb_{0,2}Tb_{0,8}Te_6$	782	1160	8.8626	12.9786
$Tl_9Sb_{0,4}Tb_{0,6}Te_6$	783–785	1140	8.8542	12.9842
$Tl_9Sb_{0,5}Tb_{0,5}Te_6$	784–786	_	-	-
$Tl_9Sb_{0,6}Tb_{0,4}Te_6$	785–787; 1030	1130	8.8458	12.9898
$Tl_9Sb_{0,8}Tb_{0,2}Te_6$	788	1080	8.8374	12.9954
Tl ₉ SbTe ₆	790	1000	8.8312(2)	13.0132(1)

Some properties of phases in the Tl₅Te₃-Tl₉SbTe₆-Tl₉TbTe₆ system

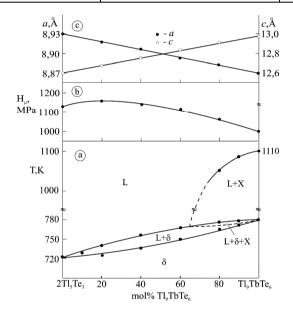
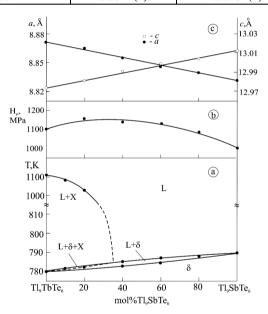



Fig. 2. Phase diagram (a), concentration relations of microhardness (b), and lattice parameters (c) for the system $2Tl_5Te_3-Tl_9TbTe_6$

The liquidus surface projection (Fig. 5). Liquidus of Tl_5Te_3 - Tl_9SbTe_6 - Tl_9TbTe_6 system consists of two fields of the primary crystallization of X-phase and *d*-solid solutions. These fields are separated by ab curve that corresponds to the monovariant peritectic equilibrium $L+X \leftrightarrow d$.

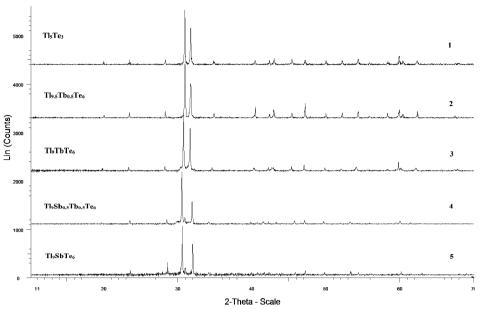
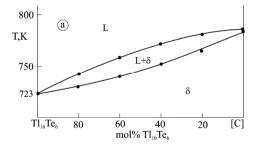
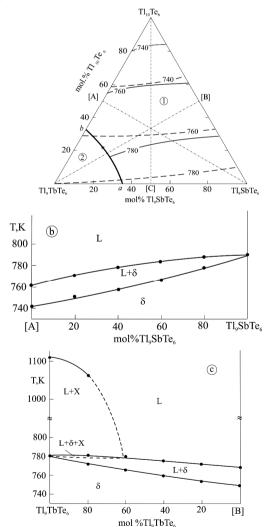
Isopleth sections of the Tl₅Te₃-Tl₉SbTe₆-Tl₉TbTe₆ system (Fig. 6). Figs. 6a-c show the isopleth sections 2Tl₅Te₃-[C], Tl₉SbTe₆-[A] and Tl₉TbTe₆-[B] of theTl₅Te₃-Tl₉SbTe₆-Tl₉TbTe₆ system, where A, B and C are alloys from the respective boundary system.

 $\label{eq:Fig. 3. Phase diagram (a), concentration relations} of microhardness (b), and lattice parameters (c) for the system $$Tl_9TbTe_6$-$Tl_9SbTe_6$$

As can be seen, over the entire compositions range of the Tl_9SbTe_6 -[A] $\mbox{\sc id}$ Tl_5Te_3 -[C] systems only $\mbox{\sc d}$ -phase crystallizes from the melt.

According to the phase diagram of the Tl_9TbTe_6 -[B] section, in the composition area <60 mol % Tl_9TbTe_6 the primary crystallization of the *d*-phase occurs from the liquid phase. In the Tl_9TbTe_6 - rich alloys the X-phase first crystallizes, then a monovariant peritectic equilibrium $L+X \leftrightarrow d$ takes place.

It should be noted that conode positions in twophase area L+d do not correspond to the cross section planes and continuously change with temperature. The conode positions at 760 K are shown in Fig. 7.

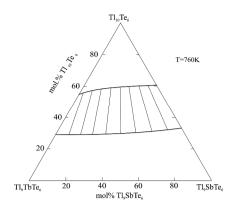

Fig. 4. XRD patterns for different compositions in the Tl_5Te_3 - Tl_9TbTe_6 (patterns 1-3) and Tl_9TbTe_6 - Tl_9SbTe_6 (patterns 3-5) systems: Tl_5Te_3 (1); 50 mol % Tl_9TbTe_6 (2); Tl_9TbTe_6 (3); 50 mol % Tl_9TbTe_6 (4) and Tl_9SbTe_6 (5)

Fig. 5. Projection of the liquidus and solidus (dashed lines) surface of the Tl_5Te_3 - Tl_9TbTe_6 - Tl_9SbTe_6 system: d(1) and X phase (2). Dash-dot lines show the investigated sections

 $\label{eq:Fig. 6. Polythermal sections $Tl_{10}Te_6$-[C], Tl_9SbTe_6-[A]$ and Tl_9TbTe_6-[B] of the phase diagram of the Tl_5Te_3-Tl_9TbTe_6-Tl_9SbTe_6 system$

Fig. 7. Isothermal section of the phase diagram of the Tl₅Te₃-Tl₉TbTe₆-Tl₉SbTe₆ system at 760 K

4. Conclusions

A complete *T-x-y* diagram of the Tl₅Te₃-Tl₉SbTe₆-Tl₉TbTe₆ system, including the *T-x* diagrams of boundary systems Tl₅Te₃-Tl₉TbTe₆ and Tl₉SbTe₆-Tl₉TbTe₆, some isopleth sections, isothermal section at 760 K, as well as the liquidus and solidus surface projections were constructed. It is found that the system is characterized by an unlimited solubility of components in the solid state. The obtained experimental data can be used for the choice of composition of solution-melt and for determining of temperature conditions for growing crystals of *d*-phase with a given composition.

Acknowledgements

The work was supported by the Science Foundation of the State Oil Company of Azerbaijan Republic (Grant for the project "Preparation and investigation of new functional materials based on complex metal chalcogenides for alternative energy sources and electronic engineering", 2014).

[1] Novoselova A., Lazarev V. (Eds.): Physico-Khimicheskie

References

Svoistva Poluprovondikovykh Materialov. Nauka, Moskva 1979.
[2] Rowe D. (Ed.): CRC Handbook of Thermoelectrics. CRC Press, New York 1995.
[3] Koc H., Simsek S., Mamedov A., Ozbay E.: Ferroelectrics, 2015, 483, 43. http://dx.doi.org/10.1080/00150193.2015.1058672
[4] Nechaev I., Aguilera I., Renzi V. et al.: Phys. Rev. B, 2015, 91, 245123. https://doi.org/10.1103/PhysRevB.91.245123
[5] Niesner D., Otto S., Hermann V. et al.: Phys. Rev. B, 2014, 89, 081404. https://doi.org/10.1103/PhysRevB.89.081404
[6] Jha A.: Rare Earth Materials: Properties and Applications. CRC Press, New York 2014. https://doi.org/10.1201/b17045
[7] Yan B., Zhang H-J., Liu C-X. et al: Phys. Rev. B, 2010, 82, 161108(R). https://doi.org/10.1103/PhysRevB.82.161108

805. https://doi.org/10.1002/pssr.201409110 [9] Schewe I., Bottcher P., Schnering H.: Z. Kristallogr., 1989, **Bd188**, 287. https://doi.org/10.1524/zkri.1989.188.14.287

[8] Singh N., Schwingenschlogl U.: Phys. Status Solidi RRL, 2014, 8,

[10] Babanly M., Akhmadyar A., Kuliev A.: Russ. J. Inorg. Chem., 1985, 30, 1051.

[11] Babanly M., Akhmadyar A., Kuliev A.: Russ. J. Inorg. Chem., 1985, **30**, 2356.

[12] Gotuk A., Babanly M., Kuliev A.: Inorg. Mater., 1979, 15, 1062.[13] Gotuk A., Babanly M., Kuliev A.: Uch. Zap. Azerb. Un-ta, 1978, 3, 50.

[14] Guo Q., Chan M., Kuropatwa B., Kleinke H.: J. Appl. Phys., 2014, **116**, 183702. https://doi.org/10.1063/1.4938058

[15] Kuropatwa B., Guo Q., Assoud A., Kleinke H.: Z. Anorg. Allg. Chem., 2014, **640**, 774. https://doi.org/10.1002/zaac.201300577 [16] Wolfing B., Kloc C., Teubner J., Bucher E.: Phys. Rev. Lett.,

2001, **86**, 4350. https://doi.org/10.1103/PhysRevLett.86.4350 [17] Arpino K., Wallace D., Nie Y. *et al.*: Phys. Rev. Lett., 2014, **112**, 017002. https://doi.org/10.1103/PhysRevLett.112.017002

[18] Imamalieva S., Sadygov F., Babanly M.: Inorg. Mater., 2008, **44**, 935. https://doi.org/10.1134/S0020168508090070

[19] Babanly M., Imamaliyeva S., Babanly D., Sadygov F.: Azerb. Chem. J., 2009, **2**, 121.

[20] Babanly M., Imamaliyeva S., Sadygov F.: News of BSU. Nat. Sci. Ser., 2009, 4, 5.

[21] Imamaliyeva S., Mashadiyeva L., Zlomanov V., Babanly M.: Inorg. Mater., 2015, **51**, 1237.

https://doi.org/10.1134/S0020168515110035

[22] Sankar C., Bangarigadu-Sanasy S., Kleinke H.: J. Elec. Mater., 2012, 41, 1662. https://doi.org/10.1007/s11664-011-1846-z

[23] Bangarigadu-Sanasy S., Sankar C., Schlender P., Kleinke H.: J. Alloy. Compd., 2013, **549**, 126.

https://doi.org/10.1016/j.jallcom.2012.09.023

[24] Bangarigadu-Sanasy S., Sankar C., Dube P. *et al.*: J. Alloy. Compd., 2014, **589**, 389.

https://doi.org/10.1016/j.jallcom.2013.11.229

[25] Guo Q., Kleinke H.: J. Alloy. Compd., 2015, **630**, 37.

 $https:\!/\!doi.org/10.1016\!/j.jallcom.2015.01.025$

[26] Babanly M., Tedenac J.-C., Imamalieva S. *et al.*: J. Alloy. Compd., 2010, **491**, 230.

https://doi.org/10.1016/j.jallcom.2009.08.157

[27] Imamaliyeva S., Guseynov F., Babanly M.: Chem. Probl. J., 2008, 4, 640.

[28] Imamaliyeva S., Guseynov F., Babanly M.: Azerb. Chem. J., 2009, 1, 49.

[29] Asadov M., Babanly M., Kuliev A.: Inorg. Mater., 1977, 13, 1407.
 [30] Imamaliyeva S., Gasanly T., Sadygov F., Babanly M.: Azerb.
 Chem. J., 2015, 3, 93.

[31] Bottcher P., Doert Th., Druska Ch., Bradtmoller S.: J. Alloy. Compd., 1997, **246**, 209. https://doi.org/10.1016/S0925-8388(96)02455-3

[32] Imamaliyeva S., Gasanly T., Amiraslanov I., Babanly M.: Am. Chem. J., 2016, **10**, 1. https://doi.org/10.9734/ACSJ/2016/22221

Received: September 20, 2016 / Revised: October 1, 2016 / Accepted: December 28, 2016

ФАЗОВІ ВЗАЄМОДІЇ У СИСТЕМІ Tl₅Te₃-Tl₀SbTe₀-Tl₀TbTe₀

Анотація. За допомогою ДТА і РСА аналізів та вимірювання мікротвердості експериментально вивчені фазові взаємодії в системі Tl_5Te_3 - Tl_9SbTe_6 - Tl_9TbTe_6 . Побудовані ізоплетний та ізотермічний переріз за 760 K, а також проекції ліквідусу і солідусу поверхонь. Встановлено, що система характеризується необмеженою розчинністю компонентів в твердому стані.

Ключові слова: талій-тербій теллуріди, талій-сурма теллуріди, фазова взіємодія, проекції ліквідуса, твердий розчин, кристалічна структура.