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Abstract
This review consist of two parts. First part of review concerned with atomic

functions theory and it’s applications in digital signal processing problems, antennas
synthesis and sampling theorem. In second part R-functions theory and WA-system
functions are considered in applications to boundary-value problems of elliptic type.
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1. INTRODUCTION
The atomic functions (AFs)
began to be studied in 1971,
after construction of the function

 up x (the term «atomic
function» was introduced only in
1975 in V.L. and
V.A. Rvachev’s paper Atomic
Functions in Mathematical
Physics) published in the book
Mathematization of Knowledge
and Scientific-Engineering
Progress, Kiev: Naukova
Dumka, 1975, pp.188-199).
Subsequently, the theory of AFs

was considered in detail in the following monographs:
 V.L. Rvachev and V.A. Rvachev Non-classical

Methods of Approximation Theory in Boundary-
Value Problems, Kiev: Naukova Dumka, 1979.

 V.L. Rvachev The R-function Theory and Its Some
Applications, Kiev: Naukova Dumka, 1982.

 V.F. Kravchenko, Lectures on the Theory of
Atomic Functions and Their Some Applications,
Moscow, Radiotechnika, 2003.

 V.F. Kravchenko and V.L. Rvachev, Algebra
Logic. Atomic Functions and Wavelets in Physical
Applications, Fizmatlit, Moscow, 2006.

 Digital Signal and Image Processing in
Radiophysical Applications, Edited by
V.F. Kravchenko, Fizmatlit, Moscow, 2007.

The history of the function

   
 

1

sin 21 exp
2 2

k

k
k

t
up x itx dt

t

 





 


is follows. In 1967 V.L. Rvachev stated the next
problem. Let  x  be a compactly supported
differentiable function increasing on one part of its
support and decreasing on another part, i.e., having one
maximum (“hump”). So, the plot of its derivate consists

of one “hump” and one “hole”. The problem is to find a
function  x  whose derivate’s “hump” and “hole”
are similar to the “hump” of the function.
Mathematically it means the following: does a
compactly supported solution to the equation
     2 1 2 1y x a y x y x        exist (for

definiteness we suppose  x  is compactly supported

on the interval  1;1 )? In V.L. and V.A. Rvachev’s
work “On One Compactly Supported Function”,
Dokl. Akad. Nauk Ukr. SSR, Ser. A, 1971, pp. 705-
707, existence and uniqueness of such a compactly
supported solution were proved. This function was
denoted by  up x . Thus, while the classical algebraic
or trigonometric polynomials satisfy homogeneous
linear differential equations with constant coefficients,
the function  up x  and other analogous functions

satisfy equations    
1
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  , where L  is

a linear differential operator with constant coefficients.
Similarly to linear differential equations with constant
coefficients, these equations also can be effectively
studied with the use of the Fourier transform. Such
equations were studied insufficiently up to now that
possibly can be explained by absence of their
immediate physical interpretation. It also was shown
that AFs take intermediate place between splines and
classical polynomials. They are smoother than splines
but are non-analytical unlike the polynomials. Similarly
to B-splines AFs are compactly supported and similarly
to polynomials they are universal from the point of
view of their approximation properties (approximate
universality). Splines are local but not approximately
universal (spline’s degree must depend on the
smoothness of an approximated function to provide
optimal rate of approximation); at the same time they
are local unlike the polynomials. Conversely, the latter
are universal from the point of view of approximation
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theory (namely, analytical functions are approximated
by polynomials better than by AFs) but are not
compactly supported. From one side, AFs are situated
between polynomials and splines and, from another
side, splines are closer to polynomials. Therefore, AFs
can be considered as a natural extension to the class of
elementary functions. Their study is very important
now when the compactly supported functions are
widely being used. AFs are useful in numerical
analysis, in the cases when an approximated function is
smooth enough and the use of polynomials is
inconvenient due to the fact that they are not compactly
supported. Here, to approximate a function of n
variables it is advisable to use the tensor product
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 . Possibly, AFs will be popular not

only in approximation theory and numerical analysis
but also in other branches of mathematics. Recently,
investigations in the domain of AFs are carried out in
many scientific directions (Fig. 1).

2. MAIN PHYSICAL APPLICATIONS OF AF
 Kravchenko-Kotel’nikov generalized series on

basis of AF  ah   and  Nfup  .
 Levitan polynomial and Strang-Fix on the basis

of AF.
 A new class of WA-systems of Kravchenko-

Rvachev functions.
 Some estimates for the spectral density of a

time series on basis of the AF family.
 Atomic functions and N-D Whittaker-

Kotel’nikov-Shannon Theorem.
 Kravchenko-Kotel’nikov analytical wavelets in

digital signal processing.
 Kravchenko-Wigner transformation in

nonlinear digital signal processing.
 Kravchenko-Kotel’nikov weight functions in

spectroscopy of digital signal processing.
 Analytical wavelets Kravchenko-Kotel’nikov

and Kravchenko-Levitan digital ultra wideband
signal processing.

 Synthesis of two-dimensional digital filters
with non standard geometry of basic area.

 Problems of multidimensional digital signal
processing.

 Signal processing antennas.
 A new technique for electronic antennas.
 Constructing of Kravchenko-Kotel’nikov-

Gauss and Kravchenko-Levitan-Gauss weight
functions.

 New class of wavelets on basis of AF  ah x .

Functional analysis
and topology

Constructive
theory of functions

WA-system functions

Atomic-fractal
functions

Approximation
theory

Interpolation and
quasi-interpolation

Hermite
interpolation

Smoothing
functions

Generalized Taylor
series

Chebyshev
approximation

Mean-square
approximation

Implicit function
approximation

Numerical analysis

Numerical
differentiation

Numerical integration

Gauss
quadratures

Quadratures
with the use of

generalized
Taylor series

Cauchy’s
problem for
differential
equations

Boundary-value
problems for partial
differential equations

Fredholm IEs of the
2-nd kind

Methods of
optimization and
optimal control

theory

Volterra IEs

Perfect splines

Problems of linear
algebra

Solving integral
equations (IE)

Fredholm IEs of the
1-st kind

Singular and hyper-
singular IEs

Nonlinear
(Hammerstein

etc.) IEs

Convolution-
type IEs

Generalized
Kotelnikov series and
Levitan polynomials

Functional-
differential equations

Digital signal and
image processing

Weighting functions
(windows)

V.F.Kravchenko-
V.A.Rvachev

V.F.Kravchenko-
V.L.Rvachev (2D)

Digital filters

Coding and compres-
sion of signals

Speech analysis and
synthesis

Digital radar

Antenna analysis and
synthesis

Integral geometry.
Radon transform

External and internal electro-
dynamics problems

Medicine tomogra-
phy

Plasma diagnostics

SAR systems

V.F.Kravchenko
V.F.Kravchenko-

Kaiser
V.F.Kravchenko-

Hamming
V.F.Kravchenko-
Blackman-Harris

Electrodynamics of superconductive
structures

Synthesis of a linear
radiator

Synthesis of antenna
arrays

Antenna pattern
optimization

Synthesis of phased
antenna arrays

Nonequally-spaced
arrays

Flat continuous ra-
diators

Flat antenna arrays

Curvilinear radiators
of arbitrary shape

Atomic-fractal anten-
nas

Analysis and synthesis
of superconductive

antennas

UW signals and
Physical Processes

Fig. 1. Main applications of atomic functions.
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 Digital processing and spectral estimation of ultra-
wideband signals by AF and wavelets.

 Atomic functions of the new of atomic-fractal
functions to problems of antenna synthesis.

 Kravchenko and Kravchenko-Rvachev weight
functions in construction problems of radar images
in aperture synthesizing.

 Atomic functions in the probability theory and
stochastic processes.

 The application of R-functions theory and wavelets
to the boundary value problems solving of the
elliptic type.

3. SPECTRAL PROPERTIES OF NEW
WEIGHTING FUNCTIONS IN DIGITAL
SIGNAL PROCESSING

As is known, one of the main questions, common for
all classic problems of signal spectral estimation, is the
use of weighting functions (windows). Digital signal
processing by means of windows is used in practice for
control of physical effects caused by presence of side
lobes in spectral estimates. In on the basis of ideas and
results presented earlier, a new method for constructing
weighting functions is developed and justified. It is
based on combination (direct product) of AF  Nfup x

with classical Gauss, Bernstein, and Dolph-Chebyshev
functions (Tables 1 and 2). Characteristics of the new
weighting functions as well as of classical Hamming,
Blackman-Harris, Natoll, and Kaiser windows are
presented. Numerical experiments and physical
analysis of results showed that parameters of the new
synthesized Kravchenko, Kravchenko-Gauss
Kravchenko-Dolph-Chebyshev windows are
comparable with those of classical windows, and some
of them are even better. These results are basic ones for
realization of digital spectral processing of multivariate
signals in Doppler radar, synthesized aperture radar, in
problems of signal resolution and compression,
computer tomography and thermography, and medicine
diagnostics.

4. ATOMIC FUNCTIONS AND NUMERICAL
METHODS OF THE ANTENNAS THEORY
SYNTHESIS

In the work E.G. Zelkin and V.F. Kravchenko
(Atomic Functions in Antenna Synthesis Problems
and New Windows, Review, Journal of
Communications Technology and Electronics,
Vol. 46, No. 8, 2001, pp. 829-857. Translated from
Radiotekhnika and Electronica, Vol. 46, No. 8, 2001,
pp.903-931) is devoted to analysis of Atomic Functions
(AF) applications to principal problems of antennas
theory. It is well known that antenna synthesis refers to

Table 1. Main physical parameters of the new
Kravchenko windows. List of symbols: K –
Kravchenko, KG – Kravchenko-Gauss, KC
- Kravchenko–Dolph-Chebyshev
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2K 1.9861 4.2498 0.8518 3.8318-51.61122.62760.3610

2
2 2K G 1.8105 7.4054 1.0259 3.6038-53.79642.42550.3944

2 3K G 1.9643 4.7297 0.8781 3.8101-68.83902.62760.3614

2 2
4 2K G 1.9631 4.7869 0.8809 3.8103-70.62032.62760.3607

4
4 2K G 1.9696 4.6700 0.8742 3.8180-71.28062.62760.3598

2
4 3K G 2.0415 3.7429 0.8156 3.9152-74.80542.62760.3467

4 3.5K C 1.80077.3910 1.0249 3.5793-74.95232.42550.3988

Table 2. Main physical parameters of classical
windows.
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Rectangular 1.0000 50.0000 3.9224 3.9224 -13.2799 1.2128 1.0000
Triangular 1.3333 25.0001 1.8242 3.0736 -26.5077 1.8191 0.5000

Gauss
3.5  1.9765 4.6147 0.8702 3.8292 -71.0006 2.6276 0.3579

Hamming 1.3638 23.3241 1.7492 3.0967 -45.9347 1.8191 0.5395
Blackman-

Harris
(four-

termed)

2.0044 3.7602 0.8256 3.8453 -92.0271 2.6276 0.3587

Natoll
(four-

termed)
1.9761 4.1760 0.8506 3.8087 -97.8587 2.6276 0.3636

Dolph-
Chebyshev
=3.5

1.6328 11.8490 1.2344 3.3636 -70.0161 2.2234 0.4434

Bernstein–
Rogozinskii

1.2337 31.8309 2.0982 3.0103 -23.0101 1.6170 0.6366

Kaiser
3  1.7952 7.3534 1.0226 3.5639 -69.6568 2.4255 0.4025
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inverse problems of mathematical physics. The
pioneering results on the mathematical theory of
radiating structure synthesis appeared in the late 1930s
in works by E.H. Brown, I. Wolf, G.S. Ramm, and
A.A. Pistol’kors, where the synthesis problem was
solved using the Fourier-series expansion. Later, this
problem was traditionally solved using partial patterns,
eigen-functions, and the Fourier integral methods. A
great contribution to solving antenna synthesis
problems was made by G.S. Ramm, A.A. Pistol’kors,
A.Z. Fradin, I.I. Vol’man, E.G. Zelkin, Ya.N. Fel’d,
L.D. Bakhrakh, and many others. Originally, the
Fourier integral method was applied by I.I. Vol’man to
the synthesis of linear antennas. This method was
developed and rigorously substantiated by E.G. Zelkin.
The eigenfunction method was developed by
A.Z. Fradin and A.A. Pistol’kors. L.D. Bakhrakh has
shown that the main results given by the eigenfunction
method can be obtained by the direct solution of the
integral equation arising in the synthesis problem. The
method of partial patterns is one of the basis methods
for solving antenna synthesis problems. In Russia, this
method was developed mainly by E.G. Zelkin and, in
England, by P. Woodward. The mathematical theory of
radiating structure synthesis was strongly influenced by
the theory of regularization of ill-posed problems,
which was created in the late 1960s by A.N. Tikhonov,
V.K. Ivanov, and M.M. Lavrent’ev. The ideals of
A.N. Tikhonov were developed further by
V.I. Dmitriev, A.V. Chechkin, A.S. Il’inskii,
V.I. Popovkin, A.G. Sveshnikov, L.D. Bakhrakh, and
S.D. Kremenetskii.
The general antenna aynthesis theory was presented in
the monograph written by B.M. Minkovich and
V.P. Yakovlev. Of certain interests are the
investigations performed by A.F. Chaplin on the
analysis and synthesis of antenna arrays as well as the
work by B.Z. Katselenbaum, A.N. Sivov, and their
colleagues. In these works, the synthesis problems are
considered as variational problems (the optimum values
of the physical antenna characteristics are sought).

The monograph by M.I. Andriychuk,
N.N. Voitovich, P.A. Savenko, and V.P. Tkachuk deals
with antenna synthesis problems in which antennas of
different types are synthesized from a given amplitude
pattern. The synthesis problem is formulated as a
variational problem with the mean-square deviation
criterion or its modifications. Despite a lot of
mathematical methods and physical approaches
developed by different scientific schools for solving
this topical and important problem, many synthesis
problems (comprising, e.g., synthesis of nonuniform
antenna arrays and mixed synthesis problems) require
developing analytical and numerical methods of
modern electrodynamics based on system approaches
and original ideas. Recently, a new mathematical
technique of atomic functions (AFs) has found
application in boundary value problems, remote-
sensing data processing, image reconstruction, physical

electronics, and antenna analysis and synthesis
problems. Now it is a full-blown theory, which is used
here to obtain the results presented below. Originally,
atomic functions had been applied to the antenna
analysis and synthesis problems by V.F. Kravchenko
(Approximation of diagram direction and synthesis of
linear radiator on basis of atomic functions,
Zarubezhnaya Radioelektronika. Uspekhy
Sovremennoy Radioelektroniki, 1996, No. 8,
pp. 23-28). These investigations were continued in
(E.G. Zelkin, V.F. Kravchenko, and V.I. Gusevskii,
Constructive Approximation Methods in Antenna
Theory, Sains-Press, Moscow, 2005). Thus, the active
applications of AF for the antenna synthesis problems
have started.

5. R-FUNCTIONS THEORY AND WAVELETS
FUNCTIONS IN THE BOUNDARY-VALUE
PROBLEMS SOLVING OF THE ELLIPTIC
TYPE

Let’s consider a new approach of solving boundary
value problems for differentinal equations of the
elliptic type partial derivatives is represented. It is
based on Galerkin classic variation method which is
converted with the help of R-functions structural
methos (V.F. Kravchenko, V.L. Rvachev. Boolean
Algebra, Atomic Functions and Wavelets in Physical
Applications, Moscow, Fizmatlit, 2006) and wavelet-
basis properties. The main point of such approach is the
construction of the computational algorithm concerning
the wavelet approximation of the analytic and
geometric components of the boundary value problem.
To convert the geometric information into analytic one
as well as to satisfy the boundary conditions of the
problem using the structures of solution helps the R-
functions body of mathematics. The basic element of
the obtained functional is the wavelet-basis
(H.L. Resnikoff, R.O. Wells, Wavelet Analysis: the
Scalable Structure of Information, New York,
Springer, 1998), the expansion coefficients of the
domain function, the function of the right part of the
equation and the function of boundary conditions of the
wavelet-basis. As a result while matrix system
compiling we obtain some calculating advantages:
matrixes of the system are discharged, the calculation
of matrix elements does not demand the integration and
is carried out with the help of finite number of
elementary mathematical operations over the coupling
coefficients of the corresponding wavelet system. New
fast computational algorithms based on fundamental
wavelet properties for coupling coefficients are also
introduced and founded in (V.F. Kravchenko,
A.V. Yurin, The application of R-functions theory
and wavelets to the boundary value problems solving
of the elliptic type, An International Journal
Electromagnetic Waves and Electronic Systems,
2009, Vol. 14, No. 3, pp. 4-39. V.F. Kravchenko,
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O.S. Labun’ko, A.M.Lerer, and G.P. Sinyavsky,
Computing Methods in the Modern Radio Physics,
Edited by V.F. Kravchenko, Moscow, Fizmatlit,
2009). The inverse problem of the analytical
geometry and the R-function method.
Owing to (V.L. Rvachev and V.A. Rvachev Non-
classical Methods of Approximation Theory in
Boundary-Value problems, Kiev: Naukova Dumka,
1979. V.L. Rvachev The R-function Theory and Its
Some Applications, Kiev: Naukova Dumka, 1982.
V.F. Kravchenko and V.L. Rvachev, Algebra Logic.
Atomic functions and Wavelets in Physical
Applications, Fizmatlit, Moscow, 2006) it is possible
to examine the construction of complex shaped locuses
at the analytic level. The methods of construction of the
function ω(x,y) are based on the theory of R-functions.
In accordance with this theory, firstly it is necessary to
derive the logical formula (predicative equation) for
construction the boundary equation for some area. Let
area S be given by R2 with the sectionally smooth
boundary ∂S. It is necessary to build the function ω(x,y)
which is positive inside S negative outside S and
vanishing at ∂S. The obtained equation ω(x,y)=0 will
define the locus which is represented by the domain
boundary. We symbolize the characteristic function
which is conformed to the area S as [ ( , ) 0]i i x y   .
Gaining some system [ ( , ) 0]i i x y    of the
characteristic functions and Boolean function
Y=F(x1…xm) we can build the predicate

1 1( ,... ) [( ( , ) 0],...[ ( , ) 0)]m mF F x y x y       

determining the area S which is built of the S1…Sm

auxiliary areas in compliance with the logical rules
determined by the Boolean function F.
Proposing that area S is got from reference areas
S1,…Sm with the help of the following logical set
operations “ ” is intersection, “ ” is unification
“ ” is complement note down

1([ ,... ],[ , , ])mS F S S    .
But for all that consider that reference areas S1…Sm

have got simpler shape, than S and for each of them the
boundary equation is given ( , ) 0i x y   (i=1…m).
The R-function method gives the opportunity to gain
the boundary  equation of the area S in the analytic
form from its set is theoretic description ( , ) 0x y  .
The definition 1. The R-function method ( the function
of V.L. Rvachev) corresponding to the discretization of
the number scale into the intervals ( ,0)  and
[0, ) is called the function the sign of which is
completely determined by the sign of its arguments.
The definition 2. The function z=f(x,y) is called R-
function if there exists such Boolean function Ф, that
S[z(x,y)]=Ф[S(x),S(y)], where the two-valued predicate
is

0, 0,
( )

1, 0.
x

S x
x


  

Each R-function corresponds the only going with it
Boolean function. The opposite is not true. The same
Boolean function corresponds the infinite set of R-
functions. The set of R-functions is closed that means
that the superposition of R-functions serves as R-
functions as well.
The definition 3. The system of functions H which
consists of R-functions is called enough complete if the
set of all superpositions of the elements H (the set of H-
realized functions) obtains nonempty intersection with
each branch of the R-function set.

The sufficient condition of the completeness of H
system is the completeness of H-system if Boolean
functions are corresponding and going with it. Some of
the sets of R-functions are given in the Table 3.
The system Rα which was mentioned in the Table 3

conveys the parameters α which can obtain the values
from the interval (-1, 1]. This parameter also can be
presented as the function of the coordinates. Especially
the special cases are of the following interest:  R0 when
α=0 and R1 when α=1. The functions from these
systems are given in the Table 4. The system mR0  is

made  of Cm class function.
Note that there are some disadvantages of the systems
R0 and R1. The first one is non-differentiable at the
coordinate origin and the second one is non-

Table 4. The R0 and R1 systems.

The system 0R The system 1R

1 0

2 2

2 0

2 2

3

y x y

x y x y

y x y

x y x y

y x x

  

     
 
  

     
 
  

   

   

1 1

2 2

2 1

3

1 2
2
1 min ,
2

1 max ,
2

y x y

x y x y xy

x y x y x y

y x y

x y x y x y

y x

  

       
 

    

  

    

 

Table 3. The main systems of R-functions.
The attendant
Boolean

function

The system
R

The system

0
mR

 1 ,F a b a b 

1 1 2

1 2

2 2
1 2 1 2

1
1

(

2 )

y x x

x x

x x x x







  

 


  

  

1 1 0 2

2 2
1 2 1 2

2 2 /2
1 2( )

m

m

y x x

x x x x

x x

  

      
 

 

 2 ,F a b a b 

2 1 2

1 2

2 2
1 2 1 2

1
1

(

2 )

y x x

x x

x x x x







  

 


  

  

2 1 0 2

2 2
1 2 1 2

2 2 /2
1 2( )

m

m

y x x

x x x x

x x

  

      
 

 

 3F b b 3y x x   3y x x  
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differentiable at the bisector of the first and third
quadrantal angles.
Consider an example (Digital Signal and Image
Processing in Radio Physical Applications, Edited by
V.F. Kravchenko, Fizmatlit. Moscow, 2007). Let us
construct the locus of the pawn. While constructing the
locus of the pawn we divide it into the range of the
subregions ω1...ω5 (Fig. 2).

Fig. 2. The image of the pawn.
The function, determining the locus has the following
view:

pawn pawn pawn pawn pawn
pawn 51 2 3 4( , ) ( , )V ( , )V ( , )V ( , )V ( , )x y x y x y x y x y x y        

For the purpose of the clearness of the axial symmetry
it is necessary to delimit the subregions: pawn

1 , pawn
2 ,

pawn
3 , pawn

4 , pawn
5 . It is carried out by the division of

the neighboring region by the parameter ε (ε→0, ε>0).
1. pawn

1  is constructed from the circle pawn
11  and the

rectangle pawn
12

pawn pawn pawn
1 11 12( , ) ( , )V ( , )x y x y x y  

   2 2pawn
11

1( , ) 1 6 1 0
2

x y x y          is the normalized

first-order circle equation, and
   2 2

pawn
12

9 3 1 1
( , ) 0

6 2
x y

x y 
      
     
   
   

 is the

normalized first-order rectangle equation.
2. pawn

2 ( , )x y  is got in a similar way:

   2 2pawn
21

1( , ) 2.25 3.5 3.5 0
3

x y x y          ,

   2 2
pawn
22

3.0625 1.75 2.25 3.5
( , ) 0

3.5 3
x y

x y 



       
     
   
   

,

and
pawn pawn pawn
2 21 22( , ) ( , )V ( , )x y x y x y  

3. The construction pawn
3 ( , )x y  is the intersection of the

sets of the rectangle pawn
31  and the parabola pawn

32 :

   2 2
pawn
31

6.25 2.5 4 7
( , ) 0

5 14
x y

x y 



       
     
   
   

.

For the derivation of the normalized first-order
parabola equation pawn 2

32 ( , ) ( 5) 2 0x y x y      we use

the well-known formula
1

22 2
1 1 1( , ) ( )x y grad   


  .

Then
   

2
pawn
32 2 22

( 5) 2( , )
( 5) 2 2 11

x y
x y

x y x

   


    
,

pawn pawn pawn
3 31 32( , ) ( , ) ( , ),x y x y x y   
pawn pawn pawn
4 41 42( , ) ( , )V ( , ),x y x y x y  

where
   2 2pawn

41 ( , ) 0.25 2.5 9.5x y x y       ,

    
2

2pawn
42

1.5625 1.25
( , ) 0.25 9.5

2.5
x

x y y 
  
     
 
 

.

 2pawn 2
5

1( , ) 6.25 12.5
5

x y x y        .

Considering the combination of the carried out
operations we can deduce the scheme of construction

   
   

pawn pawn pawn pawn
pawn 11 12 21 22

pawn pawn pawn pawn pawn
531 32 41 42

( , ) ( , )V ( , ) V ( , )V ( , ) V

V ( , ) ( , ) V ( , )V ( , ) V ( , ).

x y x y x y x y x y

x y x y x y x y x y

   

    

    

    





We obtain quite a bulky expression. Nevertheless the
combining function describing the pawn is represented
by the class of elementary functions: by the circle, the
line and parabola functions. For building another side
of the pawn it is necessary to use the transformation of
coordinates. As the function pawn ( , )x y  must be
symmetrical with regard to the ordinate axis then it
must be even endwise the abscissa as well. Thus,
having carried out the transformation

sym
pawn pawn( , ) ( , )x y x y    we shall obtain the locus which

is symmetrical with regard to the ordinate axis.
For the description of the whole chess piece it is
necessary to combine the initial area and it’s
symmetrical one by R-operations:

completed sym
pawn pawn pawn pawn pawn( , ) ( , )V ( , ) ( , )V ( , ).x y x y x y x y x y       

Thus, derived function is vanishing on the symmetric
axis. For the removal of the “special point” it is
necessary to move the locus ( , )пешка x y  over the
ordinate axis on some minor value ε (ε>0, ε →0) and
then to carry out the transformation of the symmetry:

completed
pawn pawn pawn( , , ) ( , )V ( , )x y x y x y         .

Therefore the value of the gained function about the
point x=0 will be non-zero. At the same time

completed
pawn0

0

lim ( , , ) 0
x

x y


 



  this fact leads to the deformation

of the locus. For the correction of the value of the
function completed

pawn ( , , )x y   it is necessary to multiply it by
function χ(x) which would be equal to zero under all x
except about the point х=0 and

0
lim ( )
x

x


  . As the

result we gain
completed completed
pawn pawn0

lim ( ) ( , , ) ( , )x x y x y


   


  .

Now the function
2

2
1( ) x

x
x

 
  meets the given demands

is even and therefore, completed
pawn( ) ( , , )x x y   - is R-

function. Then
2

completed
pawn pawn pawn0 2

0

1( , ) ( , )V ( , )x
x y x y x y

x



    



       .

The built chess piece is represented on the Fig. 3.
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Fig. 3. The locus
completed
pawn ( , )x y .

The Solution of Boundary-Value Problems with
help V.L. Rvachev functions and WA-system
functions. With R-functions method in the
mathematical physics theory for complex domain
appears the possibility of creating a constructive
mathematical tool, which incorporates the capabilities
of classical continuous analysis and logic algebra. This
allows one to overcome the main obstacle which
hinders the use of variational methods when solving
boundary value problems in domains of complex shape
with complex boundary conditions, this obstacle being
connected with the construction of so-called coordinate
sequences. In contrast to widely used methods of the
network type (finite difference, finite and boundary
elements), in the R-functions method all the geometric
information present in the boundary value problem
statement is reduced to analytical form, which allows
one to search for a solutions in the form of formulae
called solution structures containing some indefinite
functional components. A method (Fig.4.) of
constructing solution structures satisfying the required
conditions of completeness has been developed. The
structural formulae include the left-hand sides of the
normalized equations of the boundaries of the domains
or their regions being considered, thus allowing one to
change the solution structure expeditiously when
changing the geometric shape. Given in the work is a
definition of the basis class of R-functions, solution
with their help of the inverse problem of analytical
geometry. Thus, the main idea of the RFM consists in
two steps. In the first one, which is of an analytical
nature, the general solution of the problem is generated
in the form of a so-called “general structure of the
solution” (GSS) which strictly satisfies all the
prescribed boundary conditions and contains some
undetermined functions. In the second step these
functions are found by means of any known numerical
method in order to satisfy the governing differential
equation or to minimize a corresponding functional. Let
us find the solution u of the differential equation

Au=f ( f H ) (1)
inside the bounded domain 2    with given
boundary conditions

, 1,i iL u g i N

  (2)

on the parts ∂Ωi of the boundary ∂Ω. In Eq. 1 A is the
elliptic differential operator, the range of definition
D(A) and actual range R(A) of which are dense subsets
of the given Hilbert space H; Li are the operators of the
boundary conditions; f, gi are known functions. The
mentioned in the problem definition Eq. 1, Eq. 2
functions u, f, g, and operators A, L are analytic
components of the boundary problem, and the domain
Ω and its boundary ∂Ω are geometric objects.
The R-function method is by its essence the
constructive solution of the conversion of the geometric
information into analytic one without approximation.
Its basis is the formation of the solution structure

    1 1
, , ,N N

i ii i
u B g 

 
  (3)

which at any selection of the indefinite component Φ
satisfies the boundary conditions Eq. 2. Here, B is the
operator, depending on the geometry of domain the Ω
and the boundary parts ∂Ωi as well as on the functions
gi and operators of boundary conditions Li, but it does
not depend on the kind of operator A and function f.
Thus, the structure of solution Eq. 3 determines the
sheaf of functions, meeting the demands Eq 2. Having
the solution structure Eq. 3 which takes into
consideration the given edge conditions Eq. 2 it is
necessary to choose only the component Φ for the best
satisfaction of the fundamental equation, parts of the
boundary conditions, the simplicity of the numerical
realization or for the other demands, which are made
towards the algorithm on the whole. For most of the
approximate methods the expression of Φ as the finite
series

1
( , ) ( , ) ( , )

N

N n n
n

x y x y c x y


    (4)

along some implicit basic function system is typical.
For example, one can take the orthogonal polynomials
(trigonometrical, power, Tchebyshev of I and II types,
Legendre, Gegenbauer, atomic functions

 ,up t  2 ,fup t orthogonal wavelets Daubechies,
Coifman, Kravchenko), which belong to functions with
the infinite carrier, or finite functions (splines, atomic
functions). The matter of the extent of the advantage of
the chosen basis in R-function method is one of the
dominant which influences the quality of the obtained
solution. With the help of substitution Eq. 4 in Eq. 3 we
obtain the following structural formula:

  1 1
( , ) , , N

n n
u x y B x y c


 , (5)

and for the linear edge conditions

0
1

( , ) ( , ) ( , )
N

n n
n

u x y c x y x y 


  , (6)

where 1{ ( , )}N
n nx y   is the known functional sequence;

0 ( , )x y  is the function, considering the
heterogeneous boundary conditions. Functions Eq. 5,
Eq. 6 are also the decision structures of the
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corresponding boundary value problem, but the
unknown component there is vector  1 2, ,..., nc c cC .
The structures of the elliptic differential equation
solution in the second-order derivatives (Laplace,
Poisson, Helmholtz) for basic types of boundary
conditions are represented in Table 5.

Thus, in the R-function method it turned out to be
rather simple:
   constructing
 to change a domain from one form to another (with

the change of corresponding function)
 to change over from one kind of boundary

condition to other ones (a change of the solution
structure corresponds to this)

 to use the obtained results when solving other
problems (eg, when a sequence of the problems is
considered, viz, at first the temperature field is
found , and then the stress field caused by it is
found, or a nonlinear problem is solved as a
sequence of linear problems)

 to use integral transforms at intermediate stages
(eg, when solving non-stationary problems or
reducing the solution of a 3D problem for
prismatic bodies to 2D problems)

 to use various combinations of variational and
difference methods, et. al.

6. CONCLUSIONS
In such a brief summary it is impossible to consider

the capabilities of  the theory AF. Attention here was
focused primarily on the application of atomic to signal
processing, image reconstruction, which is also the
subject of the recent publications. However, the
potential capabilities of this mathematical tool are quite
diverse and they can find wide application in various
boundary value problems in radiophysics.

The theory of R-functions allows one to develop a
mathematical apparatus which combines the
possibilities of classical continuous analysis and
Boolean algebra. This made it possible to overcome the
main obstacle to the use of variational methods in
solving boundary value problems in domains with
complex geometry. Variational methods which
appeared well before net methods at the times of
computerization gave way to numerical methods in
which the geometry is taken into account by its discrete
optimization. In contrast to the latter, in RFM all the
geometric information contained in the mathematical
models of the fields is transformed to the analytical
form, allowing one to seek the solution in the form of
formulae called solution structures, and to construct
approximation sequences with the use of variation,
projection, and, in principle, any other methods. In this
respect, RFM is a type of amplifier for many methods,
this being testified by its use in the finite element,
boundary element, and finite difference methods. In the
RFM, geometric information may be included in the
solution structure in alphabetic form. This is especially
important from the point of view of computer
implementation of these methods, since the worked out
and debugged programs for one collection of values of
these parameters are the same simultaneously for a
multitude of other values. This made it possible

Table 5. Main types of boundary conditions and
corresponding solution structuries.

Boundary conditions Solution structuries
u 




(Dirichlet condition) u    

/u 


  n
(Neumann condition) (1 )u D    

 /u hu 


   n
(3rd-kind condition)  1 ( )u h D     

Notes: ,D
x x y x

      
         n

for condition 2 and 3 equation ω(x,y) is normalilized.

Boundary value
problem

Geometrical components
Ω, ∂Ω, ∂Ωi

Analytical components
A, Li, f, gi

R-functions

Transformation the
geometric information
into analytic one ω, ωi

The continuation of the
boundary conditions
inside the area

Wavelets
φ(x), ψ(x)

Connection  coefficients
1 2 3 41 2 31 2 , , ,, ,,

, , ,, , d d d dd d dd d
p p n p n r  

Wavelet-expansion
on scale j ω, ωi, f, g

Coefficients of
wavelet-expansion

, , ,j j j j
nm i nm nm nmf g 

The structure of solution:

    1 1
, , , , ( ) ( )

N Nj j j
nm i nm i nm nj mji i

u B g x y   
 

  ,

( ) ( )j
pq pj qj

pq

c x y   .

The matrix formation

    




1 2 3 4 1 2 3 41 2 3 1 2 31 2 1 2

1 2 31 2 1 2

1 1

, , , , , ,, , , ,, ,
, , , , , ,

, ,, ,
,

, , ,

, , , , , ,

, , , , ,

N Nkl j j j
pq a nm i rs i rsi i

nm rs

d d d d d d d dd d d d d dd d d d
k p l q k p n p l q m q k p n p r p l q m q s q

d d dd d d dj j
pq b nm rs n p m q n p r p

nm rs

a F g

b F f

 



 

           

   



     

   



 1 2 3, ,
, .d d d

m q s q 

The solution of the linear algebraic equations

(the definition unknown components j
pqc )

The result derivation (integral and differential data)

Fig. 4. Diagram of direct methods realization.
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(especially after the development of cortege algebra) to
develop the highly intelligent POLYE system and then
the RL language oriented to the solution of boundary
problems in applied electrodynamics, thermal physics
problems, computerized tomography, medicine
termography, antenna analysis and synthesis,
computational geometry, fractal design etc.
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