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1. Introduction

In recent decades, interest in the theory of special functions has increased, since these functions play
an important role in various fields of natural and engineering sciences, particularly in solving problems
of mathematical physics, aerodynamics, nuclear physics, astrophysics, acoustics, quantum field theory,
theory of probability and mathematical statistics, biomedicine and others.

Among the special functions, hypergeometric functions stand out in a special way. Hypergeometric
functions were known to be introduced by L.Euler, and eventually many domestic and foreign scientists
have been involved in their study, research and generalization [1–4].

Gaussian hypergeometric function is one of the main classes of special functions, being a com-
ponent of the solution of various problems of mathematical physics, aerodynamics, aeromechanics,
astrophysics, quantum mechanics, astronomy, biomedicine etc [5, 6].

Theoretical and practical significance of hypergeometric functions causes the need and expediency
of deeper study and research of their properties, methods of approximation and algorithms of com-
putation. Recent domestic and foreign publications [5, 7–10] confirmed the significant interest in this
issue.

Continued fractions are an effective method of approximation of the hypergeometric Gaussian
functions [9–12]. However, software has been used only for calculating the values of the approximations
or analysis of their domains of convergence until now. While the method of approximation constructing
(finding the general formulas of continued fraction coefficients) remained troublesome routine work for
scientists who built approximations with simplifying and transforming expressions manually.

Today, the algorithmic mathematics makes it possible not only to perform accurate calculations or
compare the rate of the convergence of different algorithms, but to build new formulas and recurrent
structures that is a significant contribution to the development of analytic theory.

One of the examples of using the algorithmic mathematics in constructing of the rational approxi-
mations of the Gaussian hypergeometric function is described in this article.
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2. Gaussian hypergeometric series and its analytic continuation

The main object for investigation is Gaussian hypergeometric function 2F1(a, b; c; z), which is depicted
as a hypergeometric series inside the unit circle [2]

2F1(a, b; c; z) ≡ F (a, b; c; z) ≡
∞∑

n=0

(a)n(b)nz
n

(c)nn!
, (1)

where (a)n = Γ(a+n)
Γ(a) , i.e. (a)0 = 1, (a)n = a(a+ 1)(a+ 2) · · · (a+ n− 1), n = 1, 2, 3, . . . and c 6=

0,−1,−2, . . ., a, b, c, z ∈ C.
The series converges at z = 1 if Re(c − a − b) > 0. The function to which it converges can be

extended analytically to the cut plane

D = {z ∈ C : |arg(1− z)| < π} . (2)

It is known as the hypergeometric function, or more precisely, the principal branch of the hyperge-
ometric function, and we use the same notation 2F1(a, b; c; z) for this function as for the series.

From the definition (1) we have got the equation

F (a, b; c; z) = F (b, a; c; z).

The next six functions F (a± 1, b; c; z), F (a, b± 1; c; z), F (a, b; c ± 1; z) are called contiguous to the
function F (a, b; c; z). Between F (a, b; c; z) and any two functions contiguous to it there exists a linear
relation with coefficients which are linear functions of z. There are 15 relations of this type which have
been found by Gaussian [2]. Any of these relations can be proved by expansion of hypergeometric
functions in power series by the formula (1).

If l, m, n are integers, then F (a± l, b±m; c± n; z) can be expressed by repeated applications
of these relations as a linear combination of F (a, b; c; z) and one of its contiguous functions with
coefficients which are rational functions of a, b, c, z [1, 2, 4].

For the definition of Gaussian hypergeometric function F (a, b; c; z) outside the unit disk, its analytic
continuation, particularly integrals [1–4] or continued fractions, are used [10–12]. Continued fractions
are an effective tool for analytic continuation of the ratio of two Gaussian hypergeometric functions
and the hypergeometric Gaussian function with integer parameters itself [10–12]. Continued fraction
is defined as the fraction:

∞
K
n=1

(
an
bn

)

=
a1

b1 +
a2

b2 +
a3

b3 + . . .

. (3)

The n-th approximant of continued fraction (3) is the finite fraction:

m
K
n=1

(
an
bn

)

=
a1

b1 +
a2

b2 + . . .+
am−1

bm−1 +
am
bm

.

Continued fraction is considered to be convergent if the sequence of its n-th approximants is con-
vergent. The n-th approximants are used for approximate calculation of continued fractions.

In the theory of continued fractions the expansion of the next ratio into the Gaussian fraction is
well known [11]:

F (a, b; c; z)

F (a, b + 1, c + 1, z)
= 1 +

∞
K
n=1

(anz

1

)

, (4)
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where

a2n+1 = − (a+ n)(c− b+ n)

(c+ 2n)(c+ 2n+ 1)
, a2n+2 = −(b+ n+ 1)(c− a+ n+ 1)

(c+ 2n+ 1)(c+ 2n+ 2)
, n = 0, 1, 2, . . . .

Such a fraction evenly converges to meromorphic function which is analytic continuation of the
function in the right side of equation (4) in the whole complex plane with the exception of incision
along the real axis D = [z : 0 < arg(z − 1) < 2π] [11].

This result is obtained by using the following recurrence relations for hypergeometric series (1):

F (a, b; c; z) = F (a, b+ 1; c+ 1; z) − a(c− b)

c(c+ 1)
zF (a+ 1, b+ 1; c+ 2; z), (5)

F (a, b+ 1; c + 1; z) = F (a+ 1, b+ 1; c+ 2; z) − (b+ 1)(c − ba+ 1)

(c+ 1)(c + 2)
z F (a+ 1, b+ 2; c+ 3; z).

Another less known expansion of the Gaussian hypergeometric functions ratio in a continuous
fraction of Norlund is built for the ratio

F (a, b; c; z)

F (a+ 1, b+ 1; c + 1; z)
= b0 +

a1

b1 +
a2

b2 +
a3

b3 + . . .

= b0 +
∞
K
n=1

(
an
bn

)

, (6)

where

an =
(a+ n) (b+ n)

(c+ n− 1)(c+ n)
z(1− z), n = 1, 2, 3, . . . ,

bn =

(

1− a+ b+ 2n+ 1

c+ n
z

)

, n = 0, 1, 2, . . . .

Such a fraction evenly converges to function F (a,b;c;z)
F (a+1,b+1;c+1;z) if it terminates, or if Re(z) < 1/2, or

if z = 1/2 and |Im(a+ b)| < Re(2c − a− b− 1) [12].
This expansion was obtained from the following correlation:

F (a, b; c; z)=

(

1− a+ b+ 1

c
z

)

+F (a+ 1, b+ 1; c+ 1; z)
(a+ 1)(b+ 1)

c(c+ 1)
z(1 − z)F (a+ 2, b+ 2; c+ 2; z).

(7)
A number of another expansions of the hypergeometric Gaussian functions ratios to the continued

T-fractions was researched in the monograph [10].
These results prove the relevance of building new expansions of Gaussian hypergeometric functions

ratios in continued fractions of different types for their further studies and using them for solving of
applied problems.

3. The algorithm of building the recurrent ratios for the hypergeometric Gaussian func-
tion

The generalized algorithm of deriving ratios for the hypergeometric series (1) is developed. It’s to have
such type that will allow building new expansions of hypergeometric Gaussian functions into continued
fractions. Any recurrent ratio for three hypergeometric functions can be represented as follows

G(a+ δa, b+ δb; c+ δc; z)× F (a+ δa, b+ δb; c+ δc; z)

+G′(a+ λa, b+ λb; c+ λc; z)× F (a+ λa, b+ λb; c+ λc; z)

+G′′(a+ µa, b+ µb; c+ µc; z)× F (a+ µa, b+ µb; c+ µc; z) = 0, (8)
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where δa, δb, δc, λa, λb, λc, µa, µb, µc ∈ Z and δ 6= λ ∧ δ 6= µ ∧ λ 6= µ (where δ 6= λ means that
δ = (δa, δb; δc), λ = (λa, λb;λc), δa 6= λa ∨ δb 6= λb ∨ δc 6= λc), F is hypergeometric Gaussian function
with relevant parameters, G, G′, G′′ are coefficients, which generally are different functions of these
parameters and can be represented as polynomial from z. For convenience, further we shall use short
notation of the equations

GδFδ +GλFλ +GµFµ = 0.

The algorithm of building the new recurrent ratios consists in the application to the known ratios
the transformations of two following types:

A) Change of the parameters displacement of all components of equation (offset):

G′
oFo +Gδ−λFδ−λ +G′′

µ−λFµ−λ = 0 ⇒ G′
λFλ +GδFδ +G′′

µFµ = 0,

GδFδ +G′
λFλ +G′′

µFµ = 0,

where o = (0, 0; 0) is zero offset, that is Fo = F (a, b; c; z).

B) Combining the two ratios, in which the two terms have equal offset:

G′
oFo +G′

δFδ +G′
λFλ = 0 ⇒ G′

oG
′′
δFo +

[
G′

δG
′′
δFδ
]
+G′

λG
′′
δFλ = 0,

G′′
oFo +G′′

δFδ +G′′
µFµ = 0 ⇒ G′′

oG
′
δFo +

[
G′′

δG
′
δFδ
]
+G′′

µG
′
δFµ = 0,

(
G′

oG
′′
δ −G′′

oG
′
δ

)
Fo +

(
G′

λG
′′
δ

)
Fλ +

(
−G′′

µG
′
δ

)
Fµ = 0, GoFo +GλFλ +GµFµ = 0.

In A) transformation the corresponding value λ is added to all parameters of equation, i.e. in a
traditional form the transformation looks like a change of variables a′ → a+λa, b

′ → b+λb, c
′ → c+λc.

In B) transformation the equations are multiplied to the corresponding coefficient to get a common
term (which is highlighted with square brackets), and substitution is made.

The initial input data for the algorithm are 15 known recurrent ratios for the hypergeometric
Gaussian function ( [2], pp.111–112). The transformation of either type A (with δ = (0, 0; 0)) or B
(with o = (0, 0; 0)) is to be used for building the new recurrent ratios.

Let’s introduce the following notations: o, α, β, γ – the displacement of the vector (a, b; c), where
o = (0, 0; 0), α, β, γ ∈ {(+1, 0; 0), (−1, 0; 0), (0,+1; 0), (0,−1; 0), (0, 0;+1), (0, 0;−1)}, α 6= β ∧ α 6=
−β ∧ β 6= γ ∧ β 6= −γ ∧ γ 6= α ∧ γ 6= −α.

While building the continued fractions the ratios containing F (a, b; c; z) are chosen:

G(a, b; c; z)× F (a, b; c; z) +G′(a+ δa, b+ δb; c+ δc; z)× F (a+ δa, b+ δb; c+ δc; z)

+G′′(a+ λa, b+ λb; c+ λc; z)× F (a+ λa, b+ λb; c+ λc; z) = 0,

where δa, δb, δc, λa, λb, λc ∈ {−1, 0,+1} and δ 6= λ (δa 6= λa ∨ δb 6= λb ∨ δc 6= λc). That is

GoFo +GδFδ +GλFλ = 0. (9)

The Tabl. 1 below is a summary table of the building of all recurrent ratios for the hypergeometric
Gaussian function of the form (9).

Each line indicates a final ratio type, type of transformation, offset parameters (λ, µ, δ), types of
the initial ratios, and formulas that can be obtained by using this method.

In the result of programming of this algorithm 325 ratios of (9) type were obtained. Among them
there are the known recurrent formulas (5) and (7). All obtained new ratios were tested for reliability
with the program “Wolfram Mathematica” by using the function of expressions decomposition in Taylor-
Maclaurin series in the point z0 = 0.
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Table 1. Summary table of the building of all recurrent ratios for the hypergeometric Gaussian function.

No Type λ µ δ Used Number of formulas

0.0 − −α
α − Given 3

0.1 β Given 12

1.0 A α

α+ β

− 0.1 24

1.1
B

−α α 0.0
1.0

24
β

0.1
24

1.2 γ α 24

2.0 A α
α+ β + γ

− 1.2 24

2.1 B −α α 0.0
2.0

24
β 0.1 24

3.0

B

α− β

α+ β
α

1.0

1.0

12
3.1 −α− β 1.1 6
3.2 α+ γ 1.0 24

3.3 −α+ γ
1.1 24

β 1.2 24

4.0 A α+ β

α+ β + γ

− 1.2 24
2.0 24

4.1

B

α− β α
1.0

2.0 48

4.2 −α− β
−α 2.1 24
α 1.1

2.0
24

γ 1.2 24

5.0
B

α+ β − γ
α+ β + γ

α 2.0 2.0 12
α+ β 4.0 4.0 12

5.1 α− β − γ
α

2.0
2.0

12
5.2 −α− β − γ 2.1 4

4. The expansion of the ratio of the geometric Gaussian function into continued frac-
tions

After analyzing the known examples of expansion of the ratios of hypergeometric functions into contin-
ued fractions — Gaussian fraction (4) and Norlund fraction (6) — the generalized algorithm of building
of the continued fractions based on recurrent ratios for hypergeometric Gaussian function was devel-
oped. A software implementation of the algorithm in order to automate building of relevant fractions
and to do their further research was done.

4.1. A formula of the fraction, derived from the one ratio

Consider the ratio (of 0.0, 3.1, 5.2 group) in a shortened form

GoFo +G′
δFδ +G′′

−δF−δ = 0, (10)

where {δa, δb, δc} ⊆ {−1, 0, 1}.
Divide it by G′′

−δFo
F−δ
Fo

= − Go
G′′−δ

− G′
δ

G′′−δ
× Fδ
Fo
,
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and we’ll get the recurrent formula for the fraction

F−δ
Fo

= − Go
G′′−δ

+

− G′
δ

G′′−δ
Fo
Fδ

.

Next, we’ll obtain general view of the n-th approximants by shifting the parameters on δ

F−δ
Fo

= − Go
G′′−δ

+

− G′
δ

G′′−δ

− Gδ
G′′

o
+

−
G′

2δ

G′′
o

−
G2δ

G′′
δ
+...+

−

G′
Nδ

G′′
(N−2)δ

−

GNδ
G′′

(N−1)δ

= − Go
G′′−δ

+
N
K
i=1

− G′

iδ

G′′
(i−2)δ

− Giδ
G′′

(i−1)δ

.

The Norlund’s continued fraction (6) is built due to this principle. Also, we can obtain the expansion
into relevant fractions for the following ratios:

F (a, b ± 1; c; z)

F (a, b; c; z)
,

F (a, b ± 1; c ± 1; z)

F (a, b; c; z)
,

F (a± 1, b ± 1; c; z)

F (a, b; c; z)
,

F (a± 1, b± 1; c± 1; z)

F (a, b; c; z)
.

4.2. A formula of the continued fraction, derived from the m relations

Let’s consider the following ratios:

G(1)
o Fo + Ġ

(1)
−δ1F−δ1 + G̈

(1)
δ2
Fδ2 = 0,

G(2)
o Fo + Ġ

(2)
−δ2F−δ2 + G̈

(2)
δ3
Fδ3 = 0,

. . .

G(k)
o Fo + Ġ

(k)
−δkF−δk + G̈

(k)
δk+1

Fδk+1
= 0,

. . .

G(m−1)
o Fo + Ġ

(m−1)
−δm−1

F−δm−1 + G̈
(m−1)
δm

Fδm = 0,

G(m)
o Fo + Ġ

(m)
−δmF−δm + G̈

(m)
δ1

Fδ1 = 0, (11)

where

Fo = F (a, b; c; z), Fδk = F (a+ δ(k)a , b+ δ
(k)
b ; c+ δ(k)c ; z), δk 6= o ∧ −δk 6= δk+1,

o = (0, 0; 0), δk =
(

δ(k)a , δ
(k)
b ; δ(k)c

)

, δ(k)a , δ
(k)
b , δ(k)c ∈ Z, k = 1,m, δm+1 = δ1,

F−δk
Fo

= − G
(k)
o

Ġ
(k)
−δk

+

−
G̈

(k)
δk+1

Ġ
(k)
−δk
Fo
Fδk+1

,
F−δk+1

Fo
= −G

(k+1)
o

Ġ
(k+1)
−δk+1

+

−
G̈

(k+1)
δk+2

Ġ
(k+1)
−δk+1

Fo
Fδk+2

,
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Fo
Fδk+1

= −
G

(k+1)
δk+1

Ġ
(k+1)
o

+

−
G̈

(k+1)
δk+1+δk+2

Ġ
(k+1)
o

Fδk+1

Fδk+1+δk+2

,

F−δk
Fo

= − G
(k)
o

Ġ
(k)
−δk

+

−
G̈

(k)
δk+1

Ġ
(k)
−δk

−
G

(k+1)
δk+1

Ġ
(k+1)
o

+

−
G̈

(k+1)
δk+1+δk+2

Ġ
(k+1)
o

Fδk+1

Fδk+1+δk+2

,

Fδk+1

Fδk+1+δk+2

= −
G

(k+2)
δk+1+δk+2

Ġ
(k+2)
δk+1

+

−
G̈

(k+2)
δk+1+δk+2+δk+3

Ġ
(k+2)
δk+1

Fδk+1+δk+2

Fδk+1+δk+2+δk+3

.

The continued fraction has been obtained:

F−δk
Fo

= −




G

(k)
o

Ġ
(k)
−δk





o

+

−
(

G̈
(k)
δk+1

Ġ
(k)
−δk

)

o

−




G

(k+1)
o

Ġ
(k+1)
−δk+1





δk+1

+

−









G̈
(k+1)
δk+2

Ġ
(k+1)
−δk+1









δk+1

−







G
(k+2)
o

Ġ
(k+2)
−δk+2







δk+1+δk+2

+

−















G̈
(k+2)
δk+3

Ġ
(k+2)
−δk+2















δk+1+δk+2








F−δk+3

Fo









δk+1+δk+2+δk+3

,

i.e.
F−δk
Fo

= b0 +
∞
K
i=1

ai
bi
,

where

ai = −




G̈

(k+i−1)
δk+i

Ġ
(k+i−1)
−δk+i−1





i−1
∑

j=1
δk+j

, bi = −




G

(k+i)
o

Ġ
(k+i)
−δk+i





i
∑

j=1
δk+j

, δnm+k = δk,

anm+i = −




G̈

(k+i−1)
δk+i

Ġ
(k+i−1)
−δk+i−1





i−1
∑

j=1
δk+j+n

m
∑

j=1
δj

, bnm+i = −




G

(k+i)
o

Ġ
(k+i)
−δk+i





i
∑

j=1
δk+j+n

m
∑

j=1
δj

, k = 1,m, n ∈ Z.
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5. Software implementation of the Gaussian function expansion into continued fractions

To improve the efficient research of analytic continuation of the Gaussian series using continued frac-
tions the program with the automatic process of building of the appropriate fraction was designed.
The program is intended to obtain recurrent ratios (9), to build the continued fractions and to get the
most simplified coefficients in general terms.

Program description

The program consists of two modules:

1) Module “LeoLibProj.exe” contains the algorithms described in the second and third parts. It
outputs the recurrent ratios, builds the continued fractions and simplifies obtained coefficients.
Thus, all the logic of the program without visual design is implemented in this module;

2) “Form2F1.exe” visual shell (UI). This module provides the correct input and output of data using
the first module.

To run the program one must have Windows operating system with the installed virtual machine
“NET.Framework”, version 2.0 or higher, or Linux with the similar virtual machine.

The program is designed with the parameters that allow to run it on the computers with architecture
x86 (32 bit) and x64 (64 bit).

The program has been successfully executed on the base versions of the operating systems Windows
XP (architecture x86) and Windows 7 (architecture x64).

When starting the program generates a list of all possible ratios of the form (9), used for building
of fractions.

The user selects the recurrent relations and adds them to the bottom list (Fig. 1). The program
will not allow enter the ratio, which is not suitable for the fraction building.

Fig. 1. Simple of selection of the recurrent relations.

The button “Build the fraction” will unblock only when a set of ratios is sufficient for the building
of continued fraction.

The program simplifies all coefficients before outputting of the results. To ensure compatibility
of the program with the highest number of computers, the own methods of simplifying of arithmetic
expressions were designed and programmed.

Since all the coefficients in the program are presented as the tapes that are difficult to handle to
obtain simplified expressions, the following methods of transformations were designed:
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– string to delegate (for calculations);
– string to graph;
– graph to string;
– graph into another graph (to simplify arithmetic expressions).

When converting tape into the graph, breaking into terms, splitting on multipliers, and removing
all unnecessary brackets are used.

Fig. 2. Expression factorization.

When handling the graphs we use:

• converting graph into the special view, where every level
of the graph contains only addition and subtraction, or
multiplication and division,

• removing signs into the roof of the graph and vice versa,
the brackets expansion,

• factorization (removing the common multipliers out of
the brackets, as on Fig. 2),

• cancelling the opposite terms,
• sorting the vertices of a graph (converting to the consis-

tency).

Output data are the expressions for the coefficients of the fraction in the relevant formulas. It
is worth noting that by means of equivalent transformations the resulting fractions are reduced to
fractions with denominators equal to one.

As the examples: the Gaussian fraction (4) in Fig. 3 and the Norlund fraction (6) in Fig. 4.

Fig. 3. Gaussian fraction. Fig. 4. Norlund fraction.

If for the building of expansion we use two ratios

c F (a, b; c; z) + a(z − 1)F (a + 1, b+ 1; c+ 1; z) + (a− c)F (a, b + 1; c+ 1; z) = 0,

(b− 1)z F (a, b; c; z) + (1− c)F (a, b − 1; c− 1; z) + (c− 1)F (a − 1, b− 1; c− 1; z) = 0,

Fig. 5. Modified Norlund fraction.

we can get the continued fraction for the ra-
tio (7) of another look (Fig. 5).

Therefore, by using the proposed program
one can obtain the continued fractions of differ-
ent types for given ratio of the hypergeometric
Gaussian functions. It provides new opportuni-
ties for development of both the analytical the-
ory of the continued fractions and the theory of
the special functions approximation.
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Exspansion of 2F1(a, 1; c; z) function into the continued fraction

The program can be used also for obtaining the expansion of the Gaussian with integer parameters
into the continued fraction. For instance, for computation F (a, 1; c z) we can easily use the expansion

for F (a,b+1;c z)
F (a,b;c z) and F (a,b;c z)

F (a,b+1;c z) , where b = 0 (Fig. 6) or F (a,b;c z)
F (a,b−1;c z) and F (a,b−1;c z)

F (a,b;c z) with b = 1 (Fig. 7).

Fig. 6. Gaussian fraction. Fig. 7. Norlund fraction.

For computation F (a, 2; c z) we can find the expansion F (a,b±2;c z)
F (a,b;c z) , or F (a,b;c z)

F (a,b±2;c z) in the same way.

6. Conclusions

The proposed algorithm allows to receive any relations of the Gaussian hypergeometric functions where
displacement of parameters a, b, c is equal to 0, 1 or −1. On the base of the received recurrent ratios
one can build and investigate new expansions of the ratio of Gaussian function into the continued
fraction. The software with this algorithm implemented was developed. In case the parameters of the
Gaussian hypergeometric function are integers, using this software one can obtain and investigate new
expansions of this function into the continued fractions.
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Алгоритми побудови неперервних дробiв для довiльних
вiдношень гiпергеометричних функцiй Гаусса

МанзiйО., ГладунВ., ВентикЛ.

Нацiональний унiверситет “Львiвська полiтехнiка”
вул. С. Бандери, 12, 79013, Львiв, Україна

Описано алгоритм побудови рекурентних спiввiдношень гiпергеометричних функцiй
Гаусса, в яких змiщення параметрiв a, b, c дорiвнює 0, 1 або −1. На основi таких
рекурентних спiввiдношень побудовано розвинення для вiдношення функцiй Гаусса
у неперервнi дроби. Отриманi неперервнi дроби є розвиненням вiдповiдних гiпергео-
метричних функцiй Гаусса, якщо параметри функцiї є цiлими числами.

Ключовi слова: гiпергеометричний ряд Гаусса, гiпергеометрична функцiя, непе-
рервний дрiб, рекурентне вiдношення, розвинення, вiдношення, алгоритм, наближе-
ння.
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