А. І. Гладій, Ф. І. Цюпко, І. П. Полюжин, М. М. Ларук Національний університет "Львівська політехніка", кафедра аналітичної хімії

СИНТЕЗ ТА ІДЕНТИФІКАЦІЯ НОВИХ КАРБОКСИЛАТНИХ МОНОМЕРІВ

© Гладій А. І., Цюпко Ф. І., Полюжин І. П., Ларук М. М., 2017

Розроблена рефрактометрична експрес-методика контролю процесів синтезу та очищення (полі)алкіленокси(мет)акрилових моноестерів фталевої і малеїнової кислот та підтверджена будова одержаних етилметакрилових та гексапропіленоксиакрилових моноестерів фталевої і малеїнової кислот рефрактометричним, ІЧ- та ЯМР ¹Н-спектральними методами аналізу, що дає змогу ідентифікувати вказані карбоксилатні мономери.

Ключові слова: карбоксилатні мономери, ідентифікація, ІЧ та ЯМР ¹Н спектральні методи аналізу.

A. I. Gladii, F. I. Tsyupko, I. P. Polyugyn, M. M. Laruk

SYNTHESIS AND IDENTIFICATION OF NEW CARBOXYLATE MONOMERS

© Gladii A. I., Tsyupko F. I., Polyugyn I. P., Laruk M. M., 2017

Refractometric rapid method of controlling the synthesis and purification of (poly)alkyleneoxy(meth)acrylic monoesters of phthalic and maleic acids was developed and the structure obtained of ethylmethacrylic and hexapropyleneoxyacrylic monoesters phthalic and maleic acid was found by refractometric, IR and ¹H NMR spectral analysis methods, allowing to identify these carboxylate monomers.

Key words: carboxylate monomers, identification, IR and ¹H NMR spectral analysis techniques.

Постановка проблеми. Полікарбоксилати – це переважно водорозчинні акрилові полімери, які містять карбоксильні групи (мет)акрилових кислот у макромолекулі безпосередньо біля полімерного ланцюга. Вони можуть проявляти водорозчинність чи амфіфільність залежно від складу кополімеру або будови бічного ланцюга (мет)акрилату. Ці залежності проявляються у полі(мет)акрилатів з великою довжиною бічного гідрофільного ланцюга: кополімерів метоксиполіетиленових естерів (мет)акрилових кислот і гідроксиполіалкілен-окси(мет)акрилатів (ГПАМА) [1] та кополімерів α-аліл-ω-метоксіполіетилену і малеїнового ангідриду [2], які є основою таких важливих продуктів хімічної промисловості, як гіперпластифікатори бетону [3] та деемульгатори сирої нафти [4].

Аналіз останніх досліджень і публікацій. Прищеплення до полікарбоксилатів віддаленої карбоксильної групи, яка не прив'язана до полімерного аліфатичного ланцюга, підвищує їхні антикорозійні властивості [5]. Це забезпечується попереднім ацилюванням промислово доступних ГПАМА ангідридами двоосновних кислот з подальшою кополімеризацією одержаного карбоксильмісного мономеру. Таким способом ми синтезували нові карбоксилатні мономери взаємодією гідроксиетилметакрилату (ГЕМА) і гідроксигексапропіленоксиакрилату (ППА6) з фталевим (ФА)

та малеїновим (МА) ангідридами [6–9]. Одержаним на їх основі полікарбоксилатам притаманні антикорозійні властивості. Також вони виявилися ефективними деемульгаторами нафто-водних емульсій [10].

Аналітичний контроль реакції каталітичного ацилювання гідроксіполіоксіалкілен(мет)акрилатів ангідридами дикарбонових кислот здійснювали кондуктометричним титруванням непрореагованих ангідридів [8], а ідентифікували цільові продукти методами молекулярної рефракції [9, 11].

Мета роботи – створити експрес-метод рефрактометричного контролю перебігу реакції ацилювання ГПАМА ангідридами двоосновних кислот та спектрально ідентифікувати отримані карбоксилатні мономери.

Результати досліджень та їх обговорення. Реакції ацилювання ГЕМА і ППА6 фталевим і малеїновим ангідридами проводили за 10 %-го мольного надлишку ГПАМА, без використання розчинника у присутності інгібітора термополімеризації – метоксигідрохінону, і триетиламіну (ТЕА) як каталізатора. Процес характеризується фактично 100 %-ю селективністю [6–11], тобто незначною часткою побічних продуктів реакцій: полімерних сполук та дизаміщених естерів фталевої і малеїнової кислот.

Отже, значення виходів кінцевих мономерів ФА-ГЕМА, ФА-ППА6, МА-ГЕМА і МА-ППА6 фактично відповідають значенням конверсій за ФА і МА. Отримані реакційні суміші теоретично містять 9,09 % мол. надлишкового ГЕМА або ППА6 за 100 %-ї конверсії за ФА і МА. Виділення синтезованих цільових продуктів та їх очищення здійснювали за методикою [12]. Для перевірки ефективності очищення синтезованих мономерів від домішки непрореагованого вихідного 10 %-го мольного надлишку ГПАМА були приготовані модельні суміші з вмістом ГПАМА у кількості від 20 до 30 % мол. Готували модельні суміші змішуванням наважки ГЕМА або ППА6 і відповідно обчисленої маси одержаного неочищеного продукту реакції. На рис. 1 показано залежність зміни показника заломлення реакційних сумішей ацилювання ГЕМА і ППА6 фталевим і малеїновим ангідридами від вмісту надлишкового ГПАМА в інтервалі 0...30 % мол.

Рис. 1. Залежність показника заломлення реакційної суміші від вмісту надлишкового ГЕМА або ППА6

На рис. 1 бачимо, що для усіх розглянутих реакційних систем спостерігається підвищення показника заломлення зі зменшенням кількості залишкового вмісту ГЕМА або ППА6. Одержані ряди показників заломлення, що містять відповідні значення для модельних сумішей, є фактично

прямолінійними. Знайдені значення показників заломлення відповідних очищених цільових продуктів фактично збігаються із величинами, визначеними за допомогою екстраполяції прямих.

Отже, можна стверджувати, що проведена процедура очищення одержаних реакційних сумішей від залишкового 9 %-го мольного вмісту надлишкового ГЕМА і ППА6 є ефективною. У випадку неповної конверсії ФА і МА їх залишки після охолодження реакційної маси випадають на дно реактора у вигляді кристалів і не впливають на значення показника заломлення реакційної суміші.

Отже, рефрактометричний метод визначення показника заломлення реакційної суміші можна використовувати для експрес-визначення кількості непрореагованого ГПАМА і контролю перебігу реакції у разі промислової реалізації таких процесів каталітичного ацилювання.

На основі фізико-хімічних показників одержаних карбоксилатних мономерів до і після очищення обчислено величини експериментальної молярної рефракції (MR_E) (таблиця). Значення теоретичної молярної рефракції (MR_T) для цільових продуктів були знайдені за допомогою програми ACD Lab з використанням методу інкрементів. Встановлений задовільний збіг величин MR_T і MR_E для очищених мономерів, що підтверджує їхню брутто-будову.

Продукт реакції		КЧ, мг КОН/г	ММ, г/моль	ρ, г/см ³	n_D^{20}	MR _E , см ³ /моль	MR _T , см ³ /моль
ΦΑ-ΓΕΜΑ	до очищення	192 ± 2	260	1,2281	1,5240	64,78	-
	після очищення	202 ± 4	280	1,2280	1,5252	69,90	69,46
ФА-ППА6	до очищення	92,0 ± 3	550	1,1073	1,4850	142,4	-
	після очищення	99,0 ± 2	570	1,1150	1,4942	148,9	147,6
МА- ГЕМА	до очищення	233 ± 5	210	1,2054	1,4780	49,31	-
	після очищення	246 ± 5	230	1,2170	1,4796	53,65	53,11
МА-ППА6	до очищення	100 ± 2	500	1,0896	1,4610	125,9	-
	після очищення	108 ± 3	525	1,0950	1,4645	132,4	131,2

Фізико-хімічні характеристики і показники молярної рефракції продуктів реакцій до і після очищення

Результати досліджень та їх обговорення. Структура молекул одержаних очищених мономерів ФА-ГЕМА, ФА-ППА6, МА-ГЕМА і МА-ППА6 додатково підтверджена ІЧ-спектроскопічними дослідженнями. ІЧ-спектри одержали на ІЧ-спектрофотометрі "Specord-M80" методом тонких плівок, нанесених на пластинки КВг у діапазоні хвильових чисел 4000...400 см⁻¹. ІЧ-спектри цільових мономерів і відповідних вихідних ГПАМА показані на рис. 2–5.

Порівнюючи спектри ГЕМА і ФА-ГЕМА (рис. 2), бачимо, що смуга поглинання за 3424 см⁻¹, яка належить до коливань спиртової ОН групи молекули ГЕМА, у молекулі ФА-ГЕМА зникає. Це підтверджує відсутність домішки вихідних речовин в очищеному мономері ФА-ГЕМА. Присутність ароматичної карбоксильної групи у молекулі мономера призводить до появи широкої характеристичної смуги поглинання у межах 3200...2580 см⁻¹ (v OH), а також за 896 см⁻¹, 890 см⁻¹ (δ OH) і 1320 см⁻¹ (δ OH + v C-O). На утворення естеру фталевої кислоти вказує зсув характеристичної смуги поглинання коливань карбонілу до 1724 см⁻¹ і смуги поглинання за 1136 см⁻¹ (v C-O), 1275 см⁻¹ і 1296 см⁻¹. Утворена ароматична кислота перебуває у формі димеру за рахунок утворення водневих зв'язків, що підтверджується смугою поглинання за 1700 см⁻¹. Наявність арильного фрагмента у структурі молекули ФА-ГЕМА зумовлює смуги поглинання коливань, характерних для бензольного кільця за 1452, 1488 і 1580 см⁻¹ та смуги поглинання за 3080 см⁻¹ (v C-H). Характеристичні смуги

поглинання за 1580 і 1600 см⁻¹ підтверджують спряження ароматичного кільця з карбонілом, а за 748 см⁻¹ вказує на 1,2-заміщене ароматичне ядро.

Порівняння спектрів ППА6 і ФА-ППА6 (рис. 3) вказує, що вторинна ОН група ППА6 у молекулі ФА-ППА6 зникає. Це призводить до відсутності характеристичної смуги поглинання гідроксильних груп за 3472 см⁻¹ у спектрі ФА-ППА6. Поява ароматичної карбоксильної групи підтверджується наявністю широкої характеристичної смуги поглинання у межах 3220...2520 см⁻¹ (v OH) і появою характеристичної смуги поглинання за 1700 см⁻¹ у вигляді плеча. Утворення естеру фталевої кислоти підсилює смугу поглинання 1724 см⁻¹ (v C=O). На наявність арильного фрагмента у структурі молекули ФА-ППА6 вказують смуги поглинання коливань, характерні для бензольного кільця, за 1452, 1488 і 1580 см⁻¹ та смуги поглинання за 3080 см⁻¹ (v C-H). Характеристичні смуги поглинання за 1580 і 1600 см⁻¹ зумовлені спряженням ароматичного кільця з карбонілом, а смуга за 744 см⁻¹ – 1,2 заміщенням ароматичного кільця.

Рис. 3. ІЧ-спектри порівняння очищеного мономера ФА-ППА6 і вихідного ППА6

34

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua

Порівнюючи спектри ГЕМА і МА-ГЕМА (рис. 4), бачимо, що смуга поглинання, яка належить до коливань ОН групи спиртів молекули ГЕМА, у молекулі МА-ГЕМА майже зникає. Це призводить до відсутності характеристичної широкої смуги поглинання водневих зв'язків гідроксильних груп за 3424 см⁻¹ у спектрі МА-ГЕМА. Поява карбоксильної групи малеїнату підтверджується наявністю широкої характеристичної смуги поглинання у межах 3300...2600 см⁻¹ (v OH), а також розширенням смуги поглинання за 1730 см⁻¹ (v C=O) з появою плеча за 1705 см⁻¹ (v C=O кислоти). Взаємне спряження ненасиченого зв'язку малеїнату з карбонілом спричиняє підвищення інтенсивності смуги поглинання за 1636 см⁻¹ (v C=C) і 948...890 см⁻¹ (δ OH кислоти). Наявність смуги поглинання водневих зв'язків OH груп води за 3460 см⁻¹ вказує на гігроскопічність МА-ГЕМА і на утворення домішки ГЕМА внаслідок гідролізу у тонкій плівці на поверхні віконець КВг ІЧ-спектрофотометра.

Порівняння спектрів ППА6 і МА-ППА6 (рис. 5) показує, що смуга поглинання, яка належить до коливань ОН групи спиртів молекули ППА6, у спектрі очищеного продукту є дещо зміщеною і відповідає максимуму поглинання за 3480 см⁻¹, що свідчить про гігроскопічність і утворення домішки ППА6 внаслідок гідролізу під дією атмосферної вологи, що характерно для естерів. Натомість поява карбоксильної групи малеїнату підтверджується наявністю широкої характеристичної смуги поглинання у межах 3300...2600 см⁻¹ (v OH), а також розширенням смуги поглинання за 1732 см⁻¹ (v C=O). Взаємне спряження ненасиченого зв'язку малеїнату з карбонілом призводить до підвищення інтенсивності смуг поглинання за 1640 см⁻¹ (v C=C).

Отже, результати IЧ-спектральних досліджень повністю підтверджують будову одержаних мономерів ФА-ГЕМА, ФА-ППА6, МА-ГЕМА і МА-ППА6.

Будову мономерів також підтверджували ЯМР ¹Н-спектральним аналізом. Очищені зразки (полі)алкіленокси(мет)акрилових моноестерів фталевої і малеїнової кислот аналізували на спектрометрі Bruker Avance DRX-400 (400,15 МГц) у (CD₃)₂CO (внутрішній стандарт тетраметилсилан). Спектр ЯМР ¹Н мономера ФА-ГЕМА після очищення показано на рис. 6.

Рис. 4. IЧ-спектри порівняння очищеного мономера МА-ГЕМА і вихідного ГЕМА

Рис. 5. ІЧ-спектри порівняння очищеного мономера МА-ППА6 і вихідного ППА6

Рис. 6. Спектр ЯМР¹Н мономера ФА-ГЕМА

Протони метилової групи метакрилового фрагмента реєструються при 1.89 м.д. у вигляді синглету. Два протони метиленової групи метакрилового фрагмента дають сигнал при 5.61 і 6.10 м.д. у вигляді двох, близько розташованих синглетів. Два триплети при 4.45 і 4.56 м.д. вказують на присутність протонів метиленових груп оксиетиленового фрагмента. Чотири протони

арильного фрагмента реєструються при 7.63...7.86 м.д. у вигляді мультиплету. Протон карбоксильної групи реєструється при 11.47 м.д.

Спектр ЯМР ¹Н мономера ФА-ППА6 після очищення показано на рис. 7.

Рис.7. Спектр ЯМР 1 Н мономера Φ А-ППА6

Три близько розташовані синглети при 5.88, 6.18 і 6.35 м.д. є сигналом протонів акрилоїлу. Протони метиленових і метильних груп, а також третинних атомів вуглецю оксипропіленового фрагмента реєструються відповідно при 4.04...4.22, 1.10 і 3.45...3.72 м.д. Мультиплет при 7.64...7.83 м.д. дає чотири протони арильного фрагмента. Протон карбоксильної групи реєструється при 11.85 м.д. У спектрі присутні смуги залишкових кількостей екстрагента – толуолу.

Спектр ЯМР ¹Н мономера МА-ГЕМА після очищення показано на рис. 8. Протони метилової групи метакрилового фрагмента реєструються при 1.88 м.д. у вигляді синглета. Два близько розташовані синглети при 5.61 і 6.07 м.д. вказують на присутність метиленової групи метакрилового фрагменту. Метиленові групи оксиетиленового фрагменті реєструються при 4.36 і 4.42 м.д. у вигляді двох триплетів. При 6.39 м.д фіксуються два протони вторинних атомів вуглецю малеїнового фрагменту у вигляді синглета, а при 12.42 м.д. – протон карбоксильної групи.

Спектр ¹Н ЯМР мономера МА-ППА6 після очищення показано на рис. 9. Три близько розташовані синглети при 5.89, 6.17 і 6.35 м.д. вказують на протони акрилоїлу, а при 4.10, 1.10 і 3.45...3.72 м.д реєструються протони метиленових і метильних груп та третинних атомів вуглецю оксипропіленового фрагмента відповідно. Синглет при 6.40 м.д. дає два протони вторинних атомів вуглецю малеїнового фрагмента, а протон карбоксильної групи реєструється при 12.73 м.д. У спектрі також присутні смуги залишкових кількостей екстрагента – толуолу.

Отже, позиції і кратності сигналів, а також їхні відносні інтенсивності повністю відповідають будові мономерів ФА-ГЕМА, ФА-ППА6, МА-ГЕМА і МА-ППА6. Смуги, які відповідають спиртовій похідній та ангідриду, а також відповідній дикарбоновій кислоті у спектрах ЯМР ¹Н відсутні, що вказує на належний ступінь очищення кінцевого продукту від домішок початкових речовин.

Рис. 9. Спектр ЯМР ¹Н мономера МА-ППА6

Висновки. Розроблена рефрактометрична експрес-методика контролю процесів синтезу та очищення (полі)алкіленокси(мет)акрилових моноестерів фталевої і малеїнової кислот.

Підтверджена будова одержаних етилметакрилових та гексапропіленоксиакрилових моноестерів фталевої і малеїнової кислот рефрактометричним, ІЧ- та ЯМР ¹Н-спектральними методами аналізу, що дає змогу ідентифікувати вказані карбоксилатні мономери.

1. Заявка EP1209178A1 Європа, C08F 290/06. Process for the production of (meth)acrylic polymers / Shibata K. at all (Японія); Као Согр. – № 99938587.5; Заявл. 23.08.1999; Опубл. 29.05.2002; Бюл. 2002/22. – 12 с. 2. Etsuo Sakai, Kazuo Yamada and Akira Ohta, Molecular structure and dispersion adsorption mechanisms of comb-type superplasticizers used in Japan, Journal of Advanced Concrete Technology. – 2003. Vol. 1. – P. 16–25. 3. Zhang R, Li Q, Zhang A, et al. The Synthesis Technique of Polyacrylic Acid Superplasticizer. Journal of Wuhan University of Technology-Mater. Sci. Ed. – 2008. Vol. 23, no. 6. – P. 830–833. 4. Malcolm A. Kelland. Production chemicals for the oil and gas industry, Taylor & Francis Group, LLC. – London, 2009. – 404 р. 5. Шехтер Ю. Н. Поверхносто-активные вещества из нефтяного сырья: моногр. / Ю. Н. Шехтер, С. Э. Крейн. – М.: Химия, 1971. – 488 с. 6. Gladii A., Bereza V., Tsiupko F., Yatchyshyn Y. Synthesis of water-soluble polycarboxylates on the base of phthalic anhydride // Proceedings of the 3rd International Conference of Young Scientists CCT-2013. -Ukraine, Lviv, 2013. – Р. 88–89. 7. Гладій А. І., Цюпко Ф. І., Ятчишин Й. Й., Ларук М. М. Синтез (мет)акрилових мономерів для водорозчинних полікарбоксилатів // Вісник Національного університету "Львівська політехніка" "Хімія, технологія речовин та їх застосування". – 2013. – № 761. – С. 360–363. 8. Гладій А. І., Цюпко Ф. І., Полюжин І. П., Ятчишин Й. Й., Ларук М. М. Розробка методики аналітичного контролю реакції каталітичного ацилювання гідроксіполіангідридами оксіалкілен(мет)акрилатів дикарбонових кислот // Вісник Наиіонального університету "Львівська політехніка" "Хімія, технологія речовин та їх застосування". – 2014. – № 787. – C. 17–22. 9. Andrii Gladii, Fedir Tsyupko, Igor Polyugyn, Iosyp Yatchyshyn and Marta Laruk Kinetic regularities of hydroxypolyalkylenoxy(meth)acrylates acylation by phthalic anhydride. Journal "Chemistry & Chemical Technology". – 2015. – Vol. 9, No. 3. – Р. 267–275. 10. Цюпко Ф. та ін. Гіперрозгалужені полікарбоксилатні полімери для нафтогазової промисловості // Поступ в нафтогазопереробній та нафтохімічній промисловості: зб. тез доп. VII Міжнарод. наук.-техн. конф. – Львів, 2014. – С. 199. 11. Гладій А. І., Цюпко Ф. І., Ятчишин Й. Й., Полюжин І. П., Ларук М. М. Кінетичні закономірності реакції ацилювання гідроксиполіалкіленокси(мет)акрилатів малеїновим ангідридом // Вопросы химии и химической технологи. – 2015. – Т. 3 (101). – С. 10–18. 12. Sedláková Z. Synthesis of 2-(2-carboxybenzoyloxy)ethyl methacrylate and its radical polymerization and copolymerization with butyl methacrylate / Zdena Sedláková, Karel Bouchal, Michal Ilavský // Die Angewandte Makromolekulare Chemie. – 1992. – Vol. 201, No. 1. – P. 33–48. – doi: 10.1002/apmc.1992.052010104.