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Abstract – Computing square roots in finite fields are 
important computational problems with significant 
applications to cryptography. Therefore, in this paper, we 
introduced some methods for finding square roots. Our 
proposed method calculates the Square root using multiplier 
over. The proposed method is competitive compared with other 
existing methods. It is introduced development to decrease of 
complexity of arithmetic units. 

In addition, we approach a novel technique for Computation 
square roots presented using Half_even_odd unit mixed with 
multiplier and adder. One approach of Square Root 
presented using the same multiplier for arithmetic units 
of ECC. Thus, we goes to gets on reduced complexity for 
arithmetic units. 

 Key words: Galois Fields, Elliptical curve 
cryptography (ECC), square roots, Computation the trace, 
Computation square roots. 

I. Introduction 
Computing square roots over finite fields has found many 

applications in computer Engineering. Our own interest 
comes from elliptic curve cryptography; there, square root 
computations into Computation point equation of ECC. In 
addition, many applications requires several operations of 
square root and multipliers. This paper presents for used 
efficient square root based on the multiplier and the adder. 
The Multiplier Architecture based on the Interleaved MSB-
first multiplication. Thus, we have compared multiplication 
operation with square root. 

Moreover, the organization of this paper is as follows: 
Previous Work, Methods of computing square roots and 
quadratic equation over, Implementation square roots in 
Active-VHDL with the simulation and synthesis results 
followed by conclusion and references. 

II. Previous Work 
“Irreducibility and r-th root finding over finite fields” 

that had discuss a conjecture significantly weaker than the 
Generalized Riemann hypothesis to get a deterministic 
poly-time algorithm for r-th root finding [1]. “Computing 
p-th roots in extended finite fields of prime characteristic 

2p ≥  “that is Very efficient, direct p-th root 
computation in extended finite fields of characteristic 

2p ≥  working even for random irreducible reduction 
polynomial and for any finite field extension was 
proposed [2]. “Polynomial Representations for n-th Roots 

in Finite Fields” that generalize the results by considering 
n-th roots over finite fields for arbitrary n > 2 and 
polynomial representation is one of computational 
problems for find polynomial functions [3].  “Square root 
computation over even extension fields” that presents a 
comprehensive study of the computation of square roots 
over finite extension fields and propose two novel 
algorithms for computing square roots over even field 
extensions [4]. “An Efficient Method for Finding Square 
Root” that look into some methods for finding square 
roots that need more than one exponentiation in finite 
field [5]. In addition to the discussed above, there exist 
other literature in [6], [7].  

Here, we will describe some methods that compute the 
square root and quadratic equation that enable us on the 
solution of ECC equation, are as follows:  

III. Computation the trace 
Let, with }1,0{ci ∈ , represented as the  

)c,...,c(c 01n−= , a primitive method for computing 
)c(Tr  uses the definition of trace, requiring m-1 field 

squaring’s and m-1 field additions. A much more efficient 
method makes use of the property that the trace is linear 

[8], [9]: ))z(Tr(c)zc(Tr)c(Tr
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Trace operator has the important properties that 
)y(Tr)y(Tr 2 =  and )y(Tr)x(Tr)yx(Tr +=+  for all 

)2(GFy,x n∈ . 

The values i)z(Tr may be precomputed, allowing the 
trace of an element to be found efficiently, especially if 

0)z(Tr i =  for most i. Next are examples of computing 

traces of elements in )2(GF 163  with reduction 

polynomial 1zzzz)z(f 367163 ++++= . A routine 

calculation shows that 1)z(Tr i =  if and only if (iff)  

}157,0{i ∈ . As examples, 0)zz(Tr 46160 =+ , 

1)zz(Tr 46157 =+  and 0)1zz(Tr 46157 =++ . 

IV. Computation square roots 
The basic method over )2(GF n  is based on the little 

theorem as following [8]:  

cc
n2 = . Then 

1n2cc
−

=  over )2(GF m , it can be 
computed with m−1 squarings. 

A more efficient method is obtained from the 
observation that c  can be expressed in terms of the 
square root of the element z. 

Let )2(GF n , }1,0{ci ∈ . Since squaring is a linear 

operation in )2(GF n , the square root of c can be written as 
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Splitting c into even and odd powers, we have 
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This reveals an efficient method for c  computing: 
extract the two half-length vectors 

)c,c,c,...,c(c 0241neven −=  and )c,c,c,...,c(c 1352nodd −=  
from c (assuming m is odd), perform a field multiplication 

of oddc  of length 





2
m  with the precomputed value z , 

and finally add these results together (Fig.1). There is 
example of square root calculation for )2(GF 4 , z=2, 

01015z == , 1z)z(f += , c=1110, 1101c = . 
In the case that the reduction polynomial f is a 

trinomial, the computation of c  can be further 
accelerated by the observation that an efficient formula 
for z  can be derived directly from f. Let 

1zz)z(f km ++=  be an irreducible trinomial of degree 
m, where m>2 is prime. Consider the case that k is odd. 
Note that ))z(f(modzz1 km +≡ . Then multiplying by z 
and taking the square root, we get 

))z(f(modzzz 2
1k

2
1m ++

+≡ . 

Thus, the product oddcz ⋅  requires two shift-left 
operations and one modular reduction. Now suppose k is 
even. Observe that ))z(f(mod1zz km +≡ . Then 

dividing by 1mz −  and taking the square root, we get 

))z(f)(mod1z(zz 2
k

2
)1m(

+≡
−−

.  

In order to compute sz−  modulo, where 
2

1ms −
= , one 

can use the congruence’s 
 ))z(f(modzzz tmtkt −−− +≡  for kt1 ≤≤   for writing 

sz−  as a sum of few positive powers of z. Hence, the 
product oddcz ⋅  can be performed with few shift-left 
operations and one modular reduction. For example: 

Square roots in )2(GF 409 : The reduction polynomial 
for the NIST recommended is the trinomial 

1zz)z(f 87409 ++= . Then, the new formula for 

computing the square root of )2(GFc 409∈  is  

)z(fmod)czczc(c odd
44

odd
205

evem ⋅+⋅+= . 

Square roots in )2(GF 233 : The reduction polynomial 
for the NIST recommended is the trinomial 

1zz)z(f 74233 ++= . Since k=74 is even, we have 

)z(fmod)1z(zz 37116 +⋅= − . Note that 

)z(fmod)1z(z 15974 +≡−  and 

)z(fmod)zz(z 1913242 +≡− . Then one gets that 

)z(fmod)zzz(z 19111732116 ++≡− . Hence, the new 

method for computing the square root of )2(GFc 233∈  is 
)z(fmod)c)1z)(zzz(c(c odd

3719111732
evem ⋅++++= . In 

addition to above, the computation of quadratic equation 
is solve with repeated or without repeated roots, with 
repeated roots, a quadratic equation of the type 

0cy2 =+ , where )2(GFc n∈  and )2(GFc n∈ , we must 
extract the square root of c. Since in any field of 
characteristic two we have the identity 222 yx)yx( +=+  

and similarly, 2/12/12/1 yx)yx( +=+  the square root is 
a linear operation [7]. 

In terms of a fixed basis of )2(GF n ,  namely 

n21 u,...,u,u  we may write ∑
=

=
n

1i
iiucc , where )2(GFc ∈ . 

Because of the linearity of the square root, we then have 

∑
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)2(GFR j,i ∈ . We then have ∑∑
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V. Computation quadratic  
equation without repeated roots  

In general, we can transformation equation of ECC over 
binary field to the quadratic equation that be written as 

0cby2y =++  where xb =  and 1xxc 23 ++= .  We 
have just seen that if 0b = , this equation has a unique 
solution in )2(GF n , and that this solution may be found 
by multiplying the vector representing c by the matrix R, 
which extracts square roots. 

If 0b ≠  we first transform the equation by introducing 

the new variable tbyb
yt =→= . This new variable 

satisfies the equation 0ctbtb 222 =++ , or dtt 2 =+  
where 2b

ct = .  
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We now notice that if ii
2
i vtt =+   and jj

2
j vtt =+ , 

then jiji
2

ji vv)tt()tt( +=+++ . Hence, a solution of 

the equation ii
2 vddtt ∑==+ ; )2(GFdi ∈ , is given 

by iitdt ∑= , where it  is a solution of the equation 

ii
2
i vtt =+ . 
This shows that the set of v for which the equation 

vtt 2 =+  has a solution in )2(GF n  forms a linear 

subspace of the vector space )2(GF n , and since each 
value of v corresponds to two values of t, the 
dimensionality of the subspace is evidently n-1.  

Consequently, the solutions of the equation 
0dtt 2 =++  may be represented in terms of solutions to 

the equations 0vtt ii
2
i =++ , for i = 1, 2, ,  …, n-1,  

where the vi span the space of v's for which 0vtt 2 =++  

has solutions in )2(GF n . 
If d is not expressible as a sum of such v's, the equation 

0dtt 2 =++  has no solutions in )2(GF n . If 

iivdd ∑= , then iitdt ∑=  is a solution of 

0vtt 2 =++ . The other solution is found by adding to 

the first type solution a solution of 0tt 2 =+ , namely, 
1t = . 

If ii
2
i vtt =+ , then we may square both sides to obtain 

2
i

2
i

22
i vt)t( =+ . By repeatedly squaring, we find that 
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The left-hand side of this equation is equal to i
2
i tt

n
+ , 

which is 0 for all )2(GFt n
i ∈ . Therefore, if the quadratic 

equation vtt2 =+  has solutions in )2(GF n , then 

0)v(Tr = , where )v(Tr  is defined as  ∑
−

=

1n

0j

2 j
v . 

However, all elements in )2(GF n  are roots of the 

equation 0yy
n2 =+ . From the factorization 

)y...yyy(yy
1n2n 2222 −

++++=+ , 

)1)y(Tr)(y(Tr)y...yyy1(
1n2 222 +=+++++

−
,  we 

see that exactly half of the elements in )2(GF n  have  

0)y(Tr =  and  exactly half have 1)y(Tr = . Since the 

space of v's for which dyy2 =+  has solutions in 

)2(GF n  has dimension n-1, we have the following 

theorem: If )2(GFd n∈  the quadratic equation 

dyy2 =+  has solutions in )2(GF n  iff 0)d(Tr = .  
Further uses of the trace operator it have seen that the 

quadratic  equation 1xxxyy 232 ++=+  over )2(GF n  

has solutions in )2(GF n
 iff 0)

x
1xx(Tr 2

23
=

++ .  

On the other hand there is next theorem: The cubic 
equation hxx3 =+ , )2(GFh n∈ ,  0h ≠  has a unique 

solution )2(GFx n∈   iff )1(Tr)h(Tr 1 ≠− . 

VI. Implementation square roots  
calculation in Active-VHDL 

This section introduces engineering aspects of 
implementing of square roots over )2(GF n  calculation 
that uses computation equations of elliptic curves and 
cryptographic solutions efficiently and securely in 
specific environments.  

The proposed method of  ECC enhance arithmetic unit 
with implementation of square root operation into control 
unit level. It uses first level arithmetic units such as Adder 
and Multiplier. It is also uses ROM and Half_even_odd 
unit. Half_even_odd divides Galois field elements into 
Even and Odd groups. Its VHDL-description is below. 
The proposed design of square root unit (SRU) and its 
block diagram are presented in Fig. 1 and Fig. 2. Its work 
is based on the solution of quadratic equation (with or 
without repeated roots) over )2(GF n . 

 

 
Fig. 1. The proposed design of square root unit with Multiplier. 
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Fig. 2. Block Diagram of Proposed Square root Unit 
 

--------------------------------------------------- 
--- VHDL-description  = Half_even_odd of c(x)  
--------------------------------------------------- 
library ieee;  
use ieee.std_logic_1164.all; 
use ieee.std_logic_arith.all; 
use ieee.std_logic_unsigned.all; 
use work.ECC.all; 
ENTITY Half_even_odd IS 
 
PORT( 
 C: IN STD_LOGIC_VECTOR(M-1 DOWNTO 0); 
 C_even,C_odd,square_root_2: OUT  
STD_LOGIC_VECTOR(M-1 DOWNTO 0));  
END Half_even_odd; 
 
ARCHITECTURE Half_even_odd OF  
 
Half_even_odd IS 
    
SIGNAL h_even: STD_LOGIC_VECTOR (((M-((m mod 
2)*1))/2)-(1-(m mod 2)) DOWNTO 0); 
SIGNAL h_odd : STD_LOGIC_VECTOR (((M-((m mod 
2)*3))/2)-(1-(m mod 2)) DOWNTO 0);  
SIGNAL even_0: STD_LOGIC_VECTOR (((M-((m mod 
2)*3))/2)-(1-(m mod 2)) DOWNTO 0):=(others => '0'); 
SIGNAL odd_0 : STD_LOGIC_VECTOR (((M-((m mod 
2)*1))/2)-(1-(m mod 2)) DOWNTO 0):=(others => '0');   
signal mult_done: STD_LOGIC;  
 
begin  
  
half_even:FOR i IN 0 TO ((M-((m mod 2)*1))/2)-(1-(m 
mod 2))   

GENERATE h_even(i)<=c(2*i); 
 end GENERATE;   
  
half_odd : FOR i IN 0 TO ((M-((m mod 2)*3))/2)-(1-(m 
mod 2))   
 GENERATE h_odd(i)<=c(2*i+1); 
 end GENERATE; 

  
 c_odd  <= odd_0 & h_odd;  
 c_even <= even_0 & h_even; 
  
END Half_even_odd;  

Conclusion 
In this paper new method of Square Root Calculation in 

arithmetic units which are used in elliptic curve 
cryptography (ECC) is presented. The method uses traces 
of Galois Field elements and also can be used to solve 
quadratic equations in )2(GF n .   

 The method is based on usage of existing ECC 
multipliers. The new approach reduces ECC arithmetic 
units complexity.  
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