

INTERNATIONAL YOUTH SCIENCE FORUM “LITTERIS ET ARTIBUS”, 23–25 NOVEMBER 2017, LVIV, UKRAINE 437

Computing Square Roots
and Solve Equations of ECC

over Galois Fields
Mohammed Kadhim Rahma1, Valeriy Hlukhov2

1. Department of Computer Engineering, Lviv Polytechnic
National University, UKRAINE, Lviv, S. Bandery street 12,

E-mail: muhamed_kadhem@yahoo.com

2. Department of Computer Engineering, Lviv Polytechnic
National University, UKRAINE, Lviv, S. Bandery street 12,

E-mail: valeriygl@ukr.net

Abstract – Computing square roots in finite fields are
important computational problems with significant
applications to cryptography. Therefore, in this paper, we
introduced some methods for finding square roots. Our
proposed method calculates the Square root using multiplier
over. The proposed method is competitive compared with other
existing methods. It is introduced development to decrease of
complexity of arithmetic units.

In addition, we approach a novel technique for Computation
square roots presented using Half_even_odd unit mixed with
multiplier and adder. One approach of Square Root
presented using the same multiplier for arithmetic units
of ECC. Thus, we goes to gets on reduced complexity for
arithmetic units.

 Key words: Galois Fields, Elliptical curve
cryptography (ECC), square roots, Computation the trace,
Computation square roots.

I. Introduction
Computing square roots over finite fields has found many

applications in computer Engineering. Our own interest
comes from elliptic curve cryptography; there, square root
computations into Computation point equation of ECC. In
addition, many applications requires several operations of
square root and multipliers. This paper presents for used
efficient square root based on the multiplier and the adder.
The Multiplier Architecture based on the Interleaved MSB-
first multiplication. Thus, we have compared multiplication
operation with square root.

Moreover, the organization of this paper is as follows:
Previous Work, Methods of computing square roots and
quadratic equation over, Implementation square roots in
Active-VHDL with the simulation and synthesis results
followed by conclusion and references.

II. Previous Work
“Irreducibility and r-th root finding over finite fields”

that had discuss a conjecture significantly weaker than the
Generalized Riemann hypothesis to get a deterministic
poly-time algorithm for r-th root finding [1]. “Computing
p-th roots in extended finite fields of prime characteristic

2p ≥ “that is Very efficient, direct p-th root
computation in extended finite fields of characteristic

2p ≥ working even for random irreducible reduction
polynomial and for any finite field extension was
proposed [2]. “Polynomial Representations for n-th Roots

in Finite Fields” that generalize the results by considering
n-th roots over finite fields for arbitrary n > 2 and
polynomial representation is one of computational
problems for find polynomial functions [3]. “Square root
computation over even extension fields” that presents a
comprehensive study of the computation of square roots
over finite extension fields and propose two novel
algorithms for computing square roots over even field
extensions [4]. “An Efficient Method for Finding Square
Root” that look into some methods for finding square
roots that need more than one exponentiation in finite
field [5]. In addition to the discussed above, there exist
other literature in [6], [7].

Here, we will describe some methods that compute the
square root and quadratic equation that enable us on the
solution of ECC equation, are as follows:

III. Computation the trace
Let, with }1,0{ci ∈ , represented as the

)c,...,c(c 01n−= , a primitive method for computing
)c(Tr uses the definition of trace, requiring m-1 field

squaring’s and m-1 field additions. A much more efficient
method makes use of the property that the trace is linear

[8], [9]:))z(Tr(c)zc(Tr)c(Tr
1n

0i

i
i

1n

0i

i
i ∑∑

−

=

−

=

== .

Trace operator has the important properties that
)y(Tr)y(Tr 2 = and)y(Tr)x(Tr)yx(Tr +=+ for all

)2(GFy,x n∈ .

The values i)z(Tr may be precomputed, allowing the
trace of an element to be found efficiently, especially if

0)z(Tr i = for most i. Next are examples of computing

traces of elements in)2(GF 163 with reduction

polynomial 1zzzz)z(f 367163 ++++= . A routine

calculation shows that 1)z(Tr i = if and only if (iff)

}157,0{i ∈ . As examples, 0)zz(Tr 46160 =+ ,

1)zz(Tr 46157 =+ and 0)1zz(Tr 46157 =++ .

IV. Computation square roots
The basic method over)2(GF n is based on the little

theorem as following [8]:

cc
n2 = . Then

1n2cc
−

= over)2(GF m , it can be
computed with m−1 squarings.

A more efficient method is obtained from the
observation that c can be expressed in terms of the
square root of the element z.

Let)2(GF n , }1,0{ci ∈ . Since squaring is a linear

operation in)2(GF n , the square root of c can be written as
1m21m

0i

i
izcc

−











= ∑

−

=

= ∑
−

=

−
1m

0i

i2
i)z(c

1m .

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua

INTERNATIONAL YOUTH SCIENCE FORUM “LITTERIS ET ARTIBUS”, 23–25 NOVEMBER 2017, LVIV, UKRAINE 438

Splitting c into even and odd powers, we have

∑∑
−

=

+
+

−

=

−−
+=

2
3m

0i

1i22
1i2

2
1m

0i

i22
i2)z(c)z(cc

1m1m =

∑∑
−

=
+

−

=

−
+=

2
3m

0i

i2
1i2

2
1m

0i

i
i2 zzczc

1m =

∑∑
−

+=
oddeven i

2
1i

i
i

2
i

i zczzc .

This reveals an efficient method for c computing:
extract the two half-length vectors

)c,c,c,...,c(c 0241neven −= and)c,c,c,...,c(c 1352nodd −=
from c (assuming m is odd), perform a field multiplication

of oddc of length 





2
m with the precomputed value z ,

and finally add these results together (Fig.1). There is
example of square root calculation for)2(GF 4 , z=2,

01015z == , 1z)z(f += , c=1110, 1101c = .
In the case that the reduction polynomial f is a

trinomial, the computation of c can be further
accelerated by the observation that an efficient formula
for z can be derived directly from f. Let

1zz)z(f km ++= be an irreducible trinomial of degree
m, where m>2 is prime. Consider the case that k is odd.
Note that))z(f(modzz1 km +≡ . Then multiplying by z
and taking the square root, we get

))z(f(modzzz 2
1k

2
1m ++

+≡ .

Thus, the product oddcz ⋅ requires two shift-left
operations and one modular reduction. Now suppose k is
even. Observe that))z(f(mod1zz km +≡ . Then

dividing by 1mz − and taking the square root, we get

))z(f)(mod1z(zz 2
k

2
)1m(

+≡
−−

.

In order to compute sz− modulo, where
2

1ms −
= , one

can use the congruence’s
))z(f(modzzz tmtkt −−− +≡ for kt1 ≤≤ for writing

sz− as a sum of few positive powers of z. Hence, the
product oddcz ⋅ can be performed with few shift-left
operations and one modular reduction. For example:

Square roots in)2(GF 409 : The reduction polynomial
for the NIST recommended is the trinomial

1zz)z(f 87409 ++= . Then, the new formula for

computing the square root of)2(GFc 409∈ is

)z(fmod)czczc(c odd
44

odd
205

evem ⋅+⋅+= .

Square roots in)2(GF 233 : The reduction polynomial
for the NIST recommended is the trinomial

1zz)z(f 74233 ++= . Since k=74 is even, we have

)z(fmod)1z(zz 37116 +⋅= − . Note that

)z(fmod)1z(z 15974 +≡− and

)z(fmod)zz(z 1913242 +≡− . Then one gets that

)z(fmod)zzz(z 19111732116 ++≡− . Hence, the new

method for computing the square root of)2(GFc 233∈ is
)z(fmod)c)1z)(zzz(c(c odd

3719111732
evem ⋅++++= . In

addition to above, the computation of quadratic equation
is solve with repeated or without repeated roots, with
repeated roots, a quadratic equation of the type

0cy2 =+ , where)2(GFc n∈ and)2(GFc n∈ , we must
extract the square root of c. Since in any field of
characteristic two we have the identity 222 yx)yx(+=+

and similarly, 2/12/12/1 yx)yx(+=+ the square root is
a linear operation [7].

In terms of a fixed basis of)2(GF n , namely

n21 u,...,u,u we may write ∑
=

=
n

1i
iiucc , where)2(GFc ∈ .

Because of the linearity of the square root, we then have

∑
=

=
n

1i

2/1
iiucc . Of course, 2/1

iu

can also be represented

in terms of same basis, as ∑
=

=
n

1i
jj,i

2/1
i uRu , with

)2(GFR j,i ∈ . We then have ∑∑
= =

=
n

1i

n

1j
jj,ii uRcc ,

∑ ∑
= =

=
n

1j

n

1i
jj,ii u)Rc(c .

V. Computation quadratic
equation without repeated roots

In general, we can transformation equation of ECC over
binary field to the quadratic equation that be written as

0cby2y =++ where xb = and 1xxc 23 ++= . We
have just seen that if 0b = , this equation has a unique
solution in)2(GF n , and that this solution may be found
by multiplying the vector representing c by the matrix R,
which extracts square roots.

If 0b ≠ we first transform the equation by introducing

the new variable tbyb
yt =→= . This new variable

satisfies the equation 0ctbtb 222 =++ , or dtt 2 =+
where 2b

ct = .

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua

INTERNATIONAL YOUTH SCIENCE FORUM “LITTERIS ET ARTIBUS”, 23–25 NOVEMBER 2017, LVIV, UKRAINE 439

We now notice that if ii
2
i vtt =+ and jj

2
j vtt =+ ,

then jiji
2

ji vv)tt()tt(+=+++ . Hence, a solution of

the equation ii
2 vddtt ∑==+ ;)2(GFdi ∈ , is given

by iitdt ∑= , where it is a solution of the equation

ii
2
i vtt =+ .
This shows that the set of v for which the equation

vtt 2 =+ has a solution in)2(GF n forms a linear

subspace of the vector space)2(GF n , and since each
value of v corresponds to two values of t, the
dimensionality of the subspace is evidently n-1.

Consequently, the solutions of the equation
0dtt 2 =++ may be represented in terms of solutions to

the equations 0vtt ii
2
i =++ , for i = 1, 2, , …, n-1,

where the vi span the space of v's for which 0vtt 2 =++

has solutions in)2(GF n .
If d is not expressible as a sum of such v's, the equation

0dtt 2 =++ has no solutions in)2(GF n . If

iivdd ∑= , then iitdt ∑= is a solution of

0vtt 2 =++ . The other solution is found by adding to

the first type solution a solution of 0tt 2 =+ , namely,
1t = .

If ii
2
i vtt =+ , then we may square both sides to obtain

2
i

2
i

22
i vt)t(=+ . By repeatedly squaring, we find that

j2
i

j2
i

1j2
i vtt =++ . Summing on j gives

∑∑
−

=

−

=

+ =+
1n

0j

j2
i

1n

0j

j2
i

1j2
i v)tt(.

The left-hand side of this equation is equal to i
2
i tt

n
+ ,

which is 0 for all)2(GFt n
i ∈ . Therefore, if the quadratic

equation vtt2 =+ has solutions in)2(GF n , then

0)v(Tr = , where)v(Tr is defined as ∑
−

=

1n

0j

2 j
v .

However, all elements in)2(GF n are roots of the

equation 0yy
n2 =+ . From the factorization

)y...yyy(yy
1n2n 2222 −

++++=+ ,

)1)y(Tr)(y(Tr)y...yyy1(
1n2 222 +=+++++

−
, we

see that exactly half of the elements in)2(GF n have

0)y(Tr = and exactly half have 1)y(Tr = . Since the

space of v's for which dyy2 =+ has solutions in

)2(GF n has dimension n-1, we have the following

theorem: If)2(GFd n∈ the quadratic equation

dyy2 =+ has solutions in)2(GF n iff 0)d(Tr = .
Further uses of the trace operator it have seen that the

quadratic equation 1xxxyy 232 ++=+ over)2(GF n

has solutions in)2(GF n
 iff 0)

x
1xx(Tr 2

23
=

++ .

On the other hand there is next theorem: The cubic
equation hxx3 =+ ,)2(GFh n∈ , 0h ≠ has a unique

solution)2(GFx n∈ iff)1(Tr)h(Tr 1 ≠− .

VI. Implementation square roots
calculation in Active-VHDL

This section introduces engineering aspects of
implementing of square roots over)2(GF n calculation
that uses computation equations of elliptic curves and
cryptographic solutions efficiently and securely in
specific environments.

The proposed method of ECC enhance arithmetic unit
with implementation of square root operation into control
unit level. It uses first level arithmetic units such as Adder
and Multiplier. It is also uses ROM and Half_even_odd
unit. Half_even_odd divides Galois field elements into
Even and Odd groups. Its VHDL-description is below.
The proposed design of square root unit (SRU) and its
block diagram are presented in Fig. 1 and Fig. 2. Its work
is based on the solution of quadratic equation (with or
without repeated roots) over)2(GF n .

Fig. 1. The proposed design of square root unit with Multiplier.

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua

INTERNATIONAL YOUTH SCIENCE FORUM “LITTERIS ET ARTIBUS”, 23–25 NOVEMBER 2017, LVIV, UKRAINE 440

Fig. 2. Block Diagram of Proposed Square root Unit

--- VHDL-description = Half_even_odd of c(x)

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;
use work.ECC.all;
ENTITY Half_even_odd IS

PORT(
 C: IN STD_LOGIC_VECTOR(M-1 DOWNTO 0);
 C_even,C_odd,square_root_2: OUT
STD_LOGIC_VECTOR(M-1 DOWNTO 0));
END Half_even_odd;

ARCHITECTURE Half_even_odd OF

Half_even_odd IS

SIGNAL h_even: STD_LOGIC_VECTOR (((M-((m mod
2)*1))/2)-(1-(m mod 2)) DOWNTO 0);
SIGNAL h_odd : STD_LOGIC_VECTOR (((M-((m mod
2)*3))/2)-(1-(m mod 2)) DOWNTO 0);
SIGNAL even_0: STD_LOGIC_VECTOR (((M-((m mod
2)*3))/2)-(1-(m mod 2)) DOWNTO 0):=(others => '0');
SIGNAL odd_0 : STD_LOGIC_VECTOR (((M-((m mod
2)*1))/2)-(1-(m mod 2)) DOWNTO 0):=(others => '0');
signal mult_done: STD_LOGIC;

begin

half_even:FOR i IN 0 TO ((M-((m mod 2)*1))/2)-(1-(m
mod 2))

GENERATE h_even(i)<=c(2*i);
 end GENERATE;

half_odd : FOR i IN 0 TO ((M-((m mod 2)*3))/2)-(1-(m
mod 2))
 GENERATE h_odd(i)<=c(2*i+1);
 end GENERATE;

 c_odd <= odd_0 & h_odd;
 c_even <= even_0 & h_even;

END Half_even_odd;

Conclusion
In this paper new method of Square Root Calculation in

arithmetic units which are used in elliptic curve
cryptography (ECC) is presented. The method uses traces
of Galois Field elements and also can be used to solve
quadratic equations in)2(GF n .

 The method is based on usage of existing ECC
multipliers. The new approach reduces ECC arithmetic
units complexity.

References
[1] Vishwas Bhargava, Gábor Ivanyos, Rajat Mittal,

Nitin Saxena, "Irreducibility and r-th root finding
over finite fields," Cornell University , USA, 2017.

[2] M. Repka, "Computing pth roots in extended finite
fields of prime characteristic p ≥ 2," The Institution
of Engineering and Technology, vol. 52, no. 9, p.
718 – 719, 2016.

[3] Chang, Seunghwan; Kim, Bihtnara; Lee, Hyang-
Sook, "POLYNOMIAL REPRESENTATIONS
FOR n-TH ROOTS IN FINITE FIELDS," Journal
of the Korean Mathematical Society, vol. 52, no. 1,
pp. pp.209-224, 2015.

[4] Gora Adj and Francisco Rodrıguez-Henrıquez,
"Square root computation over even extension
fields," IEEE Transactions on Computers, vol. 63,
no. 11, pp. 2829 – 2841, Nov 2014.

[5] S. J. Aboud, "An Efficient Method for Finding
Square Root," International Journal of Statistics,
ISSN:2051-8285, vol. 37, no. 1, pp. 1103-1106,
2013.

[6] PAULO S. L. M. BARRETO, JOSE FELIPE
VOLOCH, Efficient Computation of Roots in
Finite Fields, Netherlands: Kluwer Academic
Publishers, 2004.

[7] E. R. BERLEKAMP,H. RUMSEY, AND G.
SOLOMON, "On the Solution of Algebraic
Equations over Finite Fields," INFORMATION
ANn CONTROL 1O, 553-564, Jet Propulsion
Laboralory, Pasadena, California 91103,USA, June
1967.

[8] Darrel Hankerson, Alfred Menezes, Scott
Vanstone, Guide to Elliptic Curve Cryptography,
United States of America: ISBN 0-387-95273-X,
2004.

[9] K. H and P. Rosen, HANDBOOK OF DISCRETE
MATHEMATICS and ITS APPLICATIONS,
Boca Raton, FL 33487-2742: Taylor & Francis
Group, LLC, 2013.

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua

