

INTERNATIONAL YOUTH SCIENCE FORUM “LITTERIS ET ARTIBUS”, 23–25 NOVEMBER 2017, LVIV, UKRAINE 398

The model of software execution
time remote testing

Ratybor Chopey, Bohdan Knysh,
Dmytro Fedasyuk

Software Department, Lviv Polytechnic National University,
UKRAINE, Lviv, S. Bandery street 12, E-mail:

chopey.ratybor@gmail.com, knysh.bohdan@gmail.com,
fedasyuk@gmail.com

Abstract – The work deals with the problems of testing
embedded systems in the case when the latter are
geographically distributed, which is gradually getting more
common. The analysis of the application domain has revealed
the lack of information concerning remote testing of the
execution time of an embedded system. The authors have
investigated into the possibility of evaluating the duration of
time-critical functions of a distant embedded system. We’ve
introduced a model and an algorithm for measuring the
firmware execution time remotely that sustained approbation
with a number of experiments.
Кеуwords – execution time testing, worst-case execution time,

embedded system, Keil uVision, UVSOCK.

I. Introduction
Software engineering in general and quality assurance

in particular are constantly evolving, with the latter have
been providing sophisticated methods, processes and tools
for testing software no matter how complex it might be.
Meticulous quality assurance of modern software assumes
unit testing, integration testing, and other reputed
approaches. Most of these methods are not easy to apply
to embedded systems because of the specific nature of
such systems, their hardware restrictions and the fact that
the firmware execution depends on the performance of all
the peripheral devices included into any embedded
systems which makes the behavior of the latter less
determined due to the fact that the latency of peripheral
devices might be arbitrary to some extent. Besides, many
functions of embedded systems are not supposed to be
tested by software engineers, because typically an
embedded system being developed is a part of some
larger system that is resided in a distant place and thus is
not available during the phases of developing and testing.
Hence, in order to check whether the embedded system
being developed works properly, they use various
simulators.

The fact that the whole embedded system cannot be
fully accessed caused evolution of static methods for
testing the software execution time. These methods do not
assume the actual execution of the software being under
evaluation either in hardware or in simulator. The input
data for these methods may be presented by the source
code and, in addition, by the hardware architecture model.
The difficulties of using static methods for analyzing
software execution time are as follows: the results might
be and typically are too pessimistic, besides, creation and
analysis of hardware models are time-consuming. As a
result, the system gets excessively backed-up.

These problems are addressed by a number of software
execution time testing methods [1-4], the efficiency of
which has been proved when testing real embedded
systems. However, such methods are not intended for
remote testing.

In order to solve the problem of testing a remote
embedded system the authors of [5] have proposed the
architecture of a tool that gives the possibility to test a
system via TCP. The proposed tool allows its users to
access all the resources of an embedded system, test the
latter automatically and archive the testing results. The
developed tool is effective for integration testing but not
applicable for software execution time testing. Since
embedded systems are typically hard real-time systems,
careful evaluation of software execution time is of
primary importance.

All the above-mentioned leads to the idea of
investigation into the possibility of remote testing
software execution time directly in an embedded system
being subjected to quality assurance.

II. The model of remote testing process
The model of remote testing process assumes that a

client-server architecture, shown in Fig. 1, should be
used.

Fig.1 The model of software execution time remote testing

process

A server might be a personal computer which is
connected with an embedded system being tested via a
programmer. A TCP server created by Keil uVision,
allows the QA engineers to use standard integrated
development environment’s features including variables
watch and control, breakpoints, controlling the code
execution in a debug mode, etc. A client is a personal
computer, which executes the testing algorithm, sends test
data and instructions to the server, and measures the
software execution time. Keil uVision’s tools are
accessed via API uVision Socket Interface [6].

III. Testing algorithm
The developed algorithm assumes that the software

execution time is to be measured using two breakpoints,
one at the beginning, another at the end of the code
fragment being tested. The time elapsed between two
breakpoints should be measured. The remote testing
algorithm is shown in Fig. 2

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua

INTERNATIONAL YOUTH SCIENCE FORUM “LITTERIS ET ARTIBUS”, 23–25 NOVEMBER 2017, LVIV, UKRAINE 399

Fig.2 The block diagram of the algorithm of software execution

time remote testing

Step 1. Reading the name of the function the execution
time of which is to be tested.

Step 2. Seeking for the address where the assembler-
like code of the function is placed in the embedded
system’s program memory. At this step we perform
syntax analysis of the map-file auto-generated by the IDE
during compilation along with other auxiliary files. Any
map-file contains the names of all the functions included
into the assembly, and the names of all the global
variables along with the addresses indicating where these
variables reside in RAM. In the case if no traces of the
function have been detected in the map-file, the algorithm
sends a corresponding message to the user interface.

Step 3. Seeking for the end of the function. This step
requires syntax analysis of the listing file, another file
generated during compilation. The file contains a C-
language code and its assembler-like “translation”.

Step 4. Setting up Keil uVision in the debug mode and
starting the firmware execution in a real embedded
system.

Step 5. Setting up breakpoints at the function’s
beginning and ending addresses. When entering into a
breakpoint the integrated development environment Keil
uVision which serves in this case as a TCP sever
generates an event. The event causes the corresponding
callback-function to be invoked on the client side. The
callback function is the most significant part of the
proposed algorithm since it’s the very function
responsible for measuring the execution time of the
function being tested.

Step 6. Assigning such values to the corresponding
global variables that would cause control flow to the
function to be tested.

Step 7. When entering into the callback-function
indicating that some preset breakpoint has just been
reached, we start the timer in order to measure the code
execution time.

Step 8. Sending an instruction prescribing that the
program should resume its execution.

Step 9. When the callback-function is triggered again
(because the breakpoint corresponding to the end of
function has been reached), we stop the timer, define the
error of program execution time measurement, make up
for it and show the result. The nature of the error and the
ways of compensation for it are described in the next
section.

IV. Measurement inaccuracy
The error of program execution time measurement is a

sum of methodological error and the random error. The
methodological error is caused by the measurement
algorithm and can be defined by (1).
 StopCHOStartA tttt ++= (1)

where Startt is the execution time of the function that
resumes firmware in the embedded system;
 CHOt is the duration of the procedure that checks the
number of the breakpoint which caused invocation of the
callback-function.

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua

INTERNATIONAL YOUTH SCIENCE FORUM “LITTERIS ET ARTIBUS”, 23–25 NOVEMBER 2017, LVIV, UKRAINE 400

 Stopt the execution time of the function stopping the

timer used for measurements.
 In order to define the methodological error we evaluate
the computational complexity of each algorithm’s
working stage that affects the total duration:
)2()1()2(StopCHOStartA OOOO ++= (2)

where)2(StartO is the computational complexity of the

function that resumes the firmware in the embedded
system.
)1(CHOO is the computational complexity of the

procedure that checks the number of the breakpoint which
caused the invocation of the callback-function.

)2(StopO is the computational complexity of the

function that stops the timer.
 In accordance with the performed calculations of the
computational complexity we determine the
methodological measurement error using the formula

NOt AA /)5(= , where N is the amount of instructions
per second (for a personal computer).
 The random error is caused by the delay of transmitting
data via the Internet:
 BPStartNN ttt += (3)

where StartNt is the duration of sending the instruction,

prescribing that the remote embedded system should
resume executing its firmware, via the Internet;

 CHOt is the duration of sending the instruction, telling

the remote embedded system that it should invoke the
callback function, via the Internet;
 The duration of transmitting any instruction via the
Internet is a random value that is comprised of the delay of
signal transmitting, the delay of processing it in network
nodes, and the delay in the receiving buffers [7, 8].
 In order to find out the delay of sending packages
between personal computers via the Internet, we use Ping
utility.
 The software execution time is calculated as:
 NAMEX tttt −−= (4)

 where Mt is the measured software execution time.

VII. Experiments
In order to investigate into the proposed remote testing

algorithm experimentally we’ve implemented the latter in
the form of a separate software unit written in C#.

Experiments were conducted using two personal
computers Lenovo W520 including processors with the
clock frequency of 2.2HHz and RAM 8 GByte and a real-
time embedded system running under control of
STM32F407 microcontroller with the clock frequency
8 МHz.

The function chosen for testing was the implementation
of the bubble sort algorithm (Fig. 3).

void bubblesort(int *a, int n)
{
 for(j = 0; j < n – 1; j++)
 {
 for(i = 0; i < n – 1; i++)
 {
 if (arr[i] > arr[i + 1])
 {
 tmp = arr[i];
 arr[i] = arr[i + 1];

arr[i + 1] = tmp;
 }
 }
 }
}

Fig.3 The function implementing the bubble sort algorithm

 The choice of an algorithm, implementation of which
was to be tested, can be attributed to the following facts:
the algorithm is well-known and fully researched, it has
relatively low computational complexity (2N) and the
time of its execution depends solely on the amount of
instructions per second for the specific microcontroller.
 We’ve tested the bubble sort algorithm on an array of
100, 200, 500, 1000, 2000, 5000 and 10000 items.
 The results of testing the execution time of the function
that implements the chosen sort algorithm performed on
different amounts of input data are summarized in Table 1.

TABLE 1

THE TESTING RESULTS

№ of
items

Calculated
execution

time, s

Measured
execution

time, s

Average
Ping, s

100 0,00125 0,00349 0,035
200 0,005 0,0063 0,041
500 0,03125 0,034275 0,52

1000 0,125 0,127 0,045
2000 0,500 0,504 0,045
5000 3,125 3,144 0,055
10000 12,500 12,514 0,054

 The dependence of the relative measurement

inaccuracy on the execution time of the function
implementing the sort algorithm is depicted in Fig. 4.

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua

INTERNATIONAL YOUTH SCIENCE FORUM “LITTERIS ET ARTIBUS”, 23–25 NOVEMBER 2017, LVIV, UKRAINE 401

Fig. 4 The dependence of the relative measurement error on the function’s execution time

Conclusion

Upon the proposed model and algorithm of software
execution time remote testing we’ve investigated into the
possibility to test embedded systems remotely in practice.

Having performed a number of experiments we
researched the influence of delays in sending data via the
Internet on the obtained results. It has been detected that
measurement of delays in sending five packages and
averaging the results cannot provide a sufficient accuracy
for compensating for the measurement error. This fact can
be attributed to the delays’ being of arbitrary nature and
their dependence of the network route selected for
packages being sent and of the readiness of network
nodes to process packages.

The performed investigation into the relative
measurement error has proved that the error increases
when the execution time of the function being tested
reduces. This means that the developed algorithm is
reasonable to use when testing time-consuming threads
and functions.

In order to reduce the relative measurement error it’s
reasonable to use auxiliary algorithms that force the
choice of the route for sending packages to the remote
embedded system via the Internet, for network
technologies allow us to select a fixed route. This would
narrow down the amount of factors contributing into the
random part of the measurement inaccuracy and make the
averaged delay of sending a package more relevant.

References
[1] M. Wahler, E. Ferranti, R. Steiger, R. Jain and

K. Nagy, "CAST: Automating Software Tests for
Embedded Systems", 2012 IEEE Fifth International

Conference on Software Testing, Verification and
Validation, 2012.

[2] R. Kirner, "The WCET Analysis Tool CalcWcet167",
Leveraging Applications of Formal Methods,
Verification and Validation. Applications and Case
Studies, pp. 158-172, 2012.

[3] D. Fedasyuk, R. Chopey and B. Knysh, "Architecture
of a tool for automated testing the worst-case
execution time of real-time embedded systems'
firmware", 2017 14th International Conference The
Experience of Designing and Application of CAD
Systems in Microelectronics (CADSM), 2017.

[4] J. Engblom, A. Ermedahl and F. Stappert, "Structured
Testing of Worst-Case Execution Time Analysis
Methods", in 21st Real-Time System Symposium,
Orlando, 2000, pp. 154–163.

[5] J. Perpiñán, "Remote Testing of Embedded
Software", Software Quality, pp. 259-271, 2001.

[6] "Application Note 198: Using the uVision Socket
Interface", Keil.com, 2017. [Online]. Available:
http://www.keil.com/appnotes/docs/apnt_198.asp.
[Accessed: 29- Sep- 2017].

[7] M. Klumash, O. Lavriv, B. Buhyl and R. Bak,
"Model' zabezpechennya parametriv yakosti obsluho-
vuvannya systemy rozpodilu mul'tyservisnoho
trafiku", Visnyk Natsional'noho universytetu
"L'vivs'ka politekhnika", vol. 705, pp. 138-144, 2011.

[8] K. Trubchaninova and K. Polyakova, "Doslidzhennya
propusknoyi zdatnosti merezhi dostupu v zalezhnosti
vid typu abonenta", Informatsiyno-keruyuchi
systemy na zaliznychnomu transporti, vol. 5,
pp. 23-28, 2013.

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua

