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Abstract – This paper analyzes the statistical simulation  

algorithms of generalized Wiener process and increases of the 

generalized Wiener process. Models built with specified 

accuracy and reliability in space )(2 TL .  To build statistical 

models we use various spectral representation of random 

processes – namely in the  series and as integrals.  

The advantages and disadvantages of each representations 

was compared. 
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I. Basic concepts 
Let  ,,T  - be some measurable space and 1)( T .  

 

Definition 1. Generalized Wiener process (fractional 

Brownian motion) with Hurst index  1,0  is the 

Gaussian random process  TttW ,0),(  with 

correlation function  
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have a standard Wiener process.  

Generalized Wiener process can be represented as a 

series[1] 
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where  kk YX , - independent standard Gaussian random 

variables, 

 kx - real zeros Bessel functions )(xJ  ,  
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Zeros of Bessel functions can be calculated with the 

required accuracy [2]  
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For Bessel functions will use the representation 
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The model of random process can be obtained as 

     



M

k
kkkkkk YtybXtxaMtS

1

cos1sin),( , 

where  kk YX ,
 

- uncorrelated strictly sub-Gaussian 

random variables. Properties of strictly sub-Gaussian 
random variables and processes studied in [3]. 

Zeros Bessel functions just can not find, the ywill find 

with some accuracy. For kkkk yxba ,,,
 
let approximate  

values  
kkkk yxba
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k hhhh ,,, - precision computation. The model 

of random process can be obtained as 
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Accuracy of simulation )(t
 
is  MtStWt ,)()( 


 . 

In [2,4] studied estimations of accuracy and reliability of 

models in different functional spaces, namely,  space )(2 TL , 

in Orlicz spaces, in spaces of continuous functions. 

Standard Wiener process )(tW
 

is the process with 

independent increments.  Generalized Wiener process )(tW  
is the process with stationary increments. Therefore, random 

process )()()( tWtWtw  
 

is stationary Gaussian 

random process with correlation function [5]  
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Let )(t - be a real Gaussian stationary random process 

with ,0)( tE
 

)(R correlation function )(t , )(F  - 

spectral function )(t ,  



0

)(cos)(  dFtR . Gaussian 

stationary random process can be represented as  
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where  )(1 t
 
and )(2 t - the centered and uncorrelated 

random processes with uncorrelated increments such as 

210    and 

  ),()()()( 12
2

1121  FFE 
 

  ).()()()( 12
2

1222  FFE   

Let D - be some partition of the interval 

 ,,0   nD  ...0: 10 . The model of 

random process )(t
 

can be obtained as 
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Therefore, random process )(tw can be represented as 
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And for partition  nD  ...0: 10 , the 

model of random process )(tw can be obtained as 
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where  kk YX ,  - uncorrelated strictly sub-Gaussian 

random variables with  0 kk EYEX
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We study simulation of generalized Wiener process 

with representation (1),  simulation of increments of 

generalized Wiener process with representation (3). 

II. The accuracy and reliability  
of an model in )(2 TL  

Let random process )(tX  and all  ,tX n  
belongs to 

certain functional Banach space )(TA with norm of  . 

Let the two numbers be as follow 0  and 10  .  

Model  ,tX n  
approximates process )(tX with 

reliability 1  and accuracy   in the norm of space 

)(TA , if the following inequality holds 

   .,)(   tXtXP n  
Whereas,  0)0( W , then for all   the model of 

generalized Wiener process we constructed as  

)()()( twtWtW   .   (5) 

Simulation of fractional Brownian motion is reduced to 

simulation of stationary Gaussian random process. 

Methods of simulation of stationary Gaussian processes 

studied in [6-7]. 

There are theorems.
 

Theorem 1. Model ),( MtS


 
approximates process 

)(tW  
with accuracy 0  and reliability 

10,1    in the norm of space   TL ,02 , if 

inequalities hold  
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Theorem 2. Model  ,tSn  
approximates process )(t

 
with reliability 1  and accuracy   in the norm of 

space )(2 TL , if for numbers   and n  inequalities hold 
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Theorem 3. Model  ,twn  
approximates process 

)(tw
 
with  reliability 1  and accuracy   in the norm 

of space )(2 TL , if for numbers   and n  inequalities 

hold 
2

,3 nB
  

and  


























 ,

2

,
32

exp
32

1
exp

nn
BB

, 

where   


















  







n

i

i

i i

i
n df

T

T
TB

0

1

, )(
)(

))(sin(
123









. 

.)(













 





 dfT

 
Let for D

 
implemented   11  iiT  , then the 

corollary. 

Corollary 1.  Model  ,twn   
approximates process 

)(tw
 
with  reliability 1  and accuracy   in the norm 

of space )(2 TL , if for numbers   and n  inequalities 

hold 
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then the corollary. 

Corollary 2. Model  ,twn  
approximates process 

)(tw
 
with reliability  1  and accuracy   in the norm 
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of space )(2 TL , if for numbers   and n  inequalities 

hold 
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III. Simulation 
Using the model (2) requires significant computing 

resources. Table 1 shows the parameters of the model for 

different values of Hurst index, accuracy of simulation in 

space )(2 TL , for reliability 05.0 .  

TABLE 1 
PARAMETERS OF MODEL 

 

    n h    

0.01 0.05 170 0.0001 0.9 

0.01 0.05 380 0.00002 0.8 

0.01 0.05 1500 0.00002 0.7 

0.01 0.05 2200000 0.0000005 0.4 

0.05 0.05 26000 0.00001 0.4 

0.1 0.05 5000 0.00005 0.4 

0.05 0.05 1600000 0.000001 0.3 

0.1 0.05 170000 0.00001 0.3 

 

Realization  of the generalized Wiener process for 

different values  and  are presented in Fig. 1-3. 

Table 2 shows the parameters of the model of stationary 

process for different values of Hurst index, accuracy of 

simulation in space )(2 TL , for reliability 05.0 .  

 

 
 

Fig. 1. Realization of generalized Wiener process  

with 7.0  and 01.0  

 
 

Fig .2. Realization of generalized Wiener process  

with 3.0  and 1.0 .  

 

 
Fig. 3. Realization of generalized Wiener process  

with 4.0  and 1.0 .  

 

TABLE 2 
PARAMETERS OF MODEL 

 

    n     

0.1 0.05 5 000 000 1 000 000 0.3 

0.05 0.05 9 000 000 1 950 000 0.3 

0.075 0.05 8 500 000 1 920 000 0.3 

0.01 0.05 10000 1100 0.7 

0.01 0.05 60 40 0.8 

 

Realization  of increments of the generalized Wiener 

process for 7.0 , 01.0  and 05.0   are 

presented in Fig. 4. 

Realization  of the generalized Wiener process for 

05.0  and for different values   and   are presented 

in Fig. 5-7. 

Conclusions 
Each of the algorithms which discussed  above, requires 

a large number of  terms. 

The level of accuracy calculation by the first method 

consists of complexity of calculating zeros of Bessel 

functions and the functions itself. 
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Fig. 4. Realizationofincrements of generalized Wiener process  

 

 
Fig. 5.Realizationofgeneralized Wiener process 

with 8.0 and 01.0  

 

 
 

Fig. 6. Realizationofgeneralized Wiener process 

with 3.0 and 1.0  

 
 

Fig. 7. Realization of generalized Wiener process  

with 7.0  and 01.0  
 

The second model from this point is more simple to 

implement. 

To validate the quality of the simulation is possible to 

use the estimation of the  stationary random process 

correlation function. 
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