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Abstract – In order to research the knitted fabric, some specific 

curves produced by computer aided geometric design are used in 

our paper, then some diferential geometric results of these curves 

are calculated and an aplication of this concept is given. 
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I. Introduction  
The fabrics are built up from a number of yarns 

brought together to form a self supporting structure. In the 

late 1950s, hardware become available that allowed the 

machining of 3D shapes out of blocks of wood or steel. 

Bezier curves which represented by the formula 
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by P. de Casteljau at Citroen and by P. Bezier at Renault 

Company in France. The theory of Bezier curves plays a 

central role in CAGD. They are numerically the most 

stable among polynomial bases currently used in CAD 

systems, was shown by Farauki and Rajon. Thus Bezier 

curves are the ideal geometric standart for the 

representation of piecewise polynomial curves. Also, 

Bezier curves lend themselves easily to a geometric 

understanding of many CAGD phenomena, [1-3]. Bezier 

curve segments are defined only by the position vectors of 

polygon vertices. Bezier curve segments are expressed as 

a convex combination of the polygon vertex position vectors 

which define the curve, and possess a variation diminishing 

property. Consequently the curve shape can be 

approximately anticipated from the polygon shape. That is to 

say, Bezier curves and surfaces are in a form that is easy for 

a person to control, [4-5]. Computer aided geometric design 

(CAGD) concerns itself with the mathematical description of 

shape for use in computer graphics, manufacturing or 

analysis, approximation theory, data structures and computer 

algebra. CAGD is a young field. The first work in this field 

began in the mid 1960s. The term computer aided geometric 

design was coined in 1974 by R.E. Barnhill and R.F. 

Riesenfeld in connection with a conference at the University 

of Utah, [6-8]. 

II. Preliminaries 
A Bezier curve is defined by  the equation 
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 are Bernstein polynomials and 

( )r

ib t are control points for {0,..., }i n r  . The 

special conditions of the Bernstein polynomials 

are
0

0 ( ) 1B t    and ( ) 1 for {0,..., }n

jB t j n  . 

Moreover, the sum of the coefficients of Bernstein 

polynomial is 
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 . Alternatively, Bernstein 

polynomial may be written with the equation 
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The r.th degree derivative of a Bezier curve  is given 

by  
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Theorem 3.1. Let 
3

ib E be the control points, the  

Serret-Frenet frame 0{ , , }|tT N B   at the 0t   start 

point is given with the equations  
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see the details in [4]. 

Theorem: Let 0 1, ,..., nb b b  be control points for  the 

n th
 order Bezier curve ( )nb t . The curvatures at the 

starting and ending point, i.e. at 0t   and 1t   
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here  the angle  is an angle between 1b  and 0b ,  the 

angle   is an angle between 1nb   and 2nb  , [4]. 
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III. Metarial and Methods 
Theorem: The curvature radius of the Bezier curve at 

the starting point 0t   is 
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and the curvature radius of the Bezier curve at the ending 

point 1t   is 
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Proof:  By substuting the Equations (1) and (2) on the 

curvature radius formula
1

( )t


  for 0t   and 1t  , 

we can get the above equations. 

Theorem: Let 
3

ib E  be control points  of the Bezier 

curve ( )nb t  at 0t  . The curvature center  0|tm   can 

be calculated by the formula 
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Theorem: For the Bezier curve ( )nb t  with the control 

points 
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Result: Let 
3( )ib t E be Bezier curve and  

0( ) |tB t  be a binormal of the Bezier curve at the starting 

point 0t  . The curvature axis at the starting point can 

be obtain from the equation 0( ) | ( )td m B t     for 

IR . Therefore we get the equation of the curvature 

axis by 
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Theorem: Let 3
ib E  be control points of ( )nb t  at the 

ending point 1t  . If  the curvature center at the point 1t   

represented by 1|tm   , then its formula can be found by 
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Proof:  The curvature center of the nonunit speed Bezier 

curve is given by the formula 1 0 0 0| ( ) ( ) ( )tm t t N t   
.  

From this formula we can obtain 
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Theorem: Let 3
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Bezier curve ( )nb t and the curvature circle ( )   at 1t   
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Result: The curvature axis of the Bezier curve 
3( )ib t E  at the ending point is 

1( ) | ( )td m B t   
 

here IR  and 1( ) |tB t   is the Binormial vector of 

the curve. Therefore the result can be obtained by 
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Fig. 1. The curvature circle and axis  

of the third order Bezier curve 

An Application of Yarn Computer Modelling 

 

Thus the curvature raidus and curvature circle of the yarn 

has been found.  The design studies for this example is 

given following. Here we will give some properties of the 

yarn in the textile program named with TexGen 

forexample the warp yarns, weft yarns, spacing, width, 

thickness. 

 

 
 

The yarn surface can be modelled by the program 

TEXgen as following:  

 
 

The side view of this knitting surface has been 

observed in the following figure profile. 

 

Let us take the yarn as a third degree Bezier curve with 

four control points 
0 1 2 3, , ,b b b b  . Then the Bezier curve 

is defined by 
3

3 3
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( ) ( ) ( )r r

i i
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b , for another 

representation, we can write the Bezier curve as 
3 2 2 3

0 1 2 3

3( ) (1 ) 3(1 ) 3(1 )b t t t t t t t      b b b b . 

For the design of a Bezier curve model we will get the 

control points as  

0 1 2 3(0,5), (20,10), (40, 10), (60, 5)     b b b b  

and the output of the Bezier curve in the program 

MATHEMATICA as following: 

Show[Graphics[{Thickness[0.005],PointSize[Large],Bezi

erCurve[{{0,5},{20,10},{40,−10},{60,−5}}],RGBColor[
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0,0,1],Line[{{0,5},{20,10},{40,−10},{60,−5}}],RGBCol

or[1,0,0],Point[{{0,5},{20,10},{40,−10},{60,−5}}]}],Ax

es→True] 
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Thus the difference operator named control convex 

hull vectors are 
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The angle   is an angle between the vectors 0b  

and 1b  at the beginning point, i.e. 0 1: ( , )  b b . 

Therefore we can obtain the angle 
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.
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b b
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. Then  the angle is 

found as arccos(0.515) 0.870   . The angle   is 

an angle between the vectors 1b  and 2b , i.e. 

1 2: ( , )  b b . Thus the angle   can be calculated 

from the equation 
1 2
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.
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a result the angle is obtained as 

arccos(0.515) 0.870   . The curvature of the 

yarn at the beginning point is 
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. The curvature 

radius is 
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1
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|
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

  . Also for the 

control points 
3

ib E  of the Bezier curve ( )nb t  at the 

beginning point 0t  , the curvature center 0|tm   of the 

yarn is 0| (8.012,37.114)tm   . 

Conclusion 
In this paper we have researched some diferential 

geometric properties of computer aided geometric design 

curves and we have given an application for a knitted 

fabric. 
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