Sol-Gel Derived Lanthanide-Substituted Layered Double Hydroxides Mg₃/Al_{1-x}Ln_x

A. Kareiva¹, A. Smalenskaite¹, S. Şen², A. N. Salak³, M.G.S. Ferreira³, A. Beganskiene¹

¹Department of Inorganic Chemistry, Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania

²Department of Chemistry, Faculty of Arts and Sciences, Dumlupinar University, 43820 Kütahya, Turkey ³Department of Materials and Ceramic Engineering/CICECO, University of Aveiro, 3810-193 Aveiro,

Portugal

Recently, considerable attention has been focused on incorporating rare earth ions into LDHs hosts to develop new functional materials, which resemble designed optical properties [1]. LDHs doped with Tb³⁺ ions in the brucite-like layers were prepared by a simple one-step coprecipitation method [2, 3]. Nanosized LDHs doped with Eu³⁺, Yb³⁺, Tb³⁺ and Nd³⁺ were prepared through the microemulsion method [4]. The Eu³⁺ and Nd³⁺ were incorporated also into hydrocalumite and mayenite [5]. The Zn/Al/Eu and Zn/Al/Dy LDHs were also reported as perspective and efficient luminescent materials [6-8]. Cerium-doped hydrotalcite-like precursors were also recently synthesized by co-precipitation method [9].

The main aim of this study was to investigate Nd^{3+} , Sm^{3+} and Eu^{3+} substitution effects in the Mg/Al_{1-x}Ln_x systems (the Ln³⁺ concentration in the crystal lattice was changed from 0.05 to 10 mol%) fabricated for the first time to the best our knowledge by sol-gel synthesis route.

The Mg₃/Al_{1-x}Ln_x LDH samples were synthesised by sol-gel method from the solution of metal nitrates, dissolved in 50 ml of distilled water. Secondly, 0.2 M citric acid was added and obtained solution was stirred for 1 h at 80 °C. Next, 2 ml of ethylene glycol have been added to the resulted mixture with continues stirring at 150 °C until the complete evaporation of solvent. The obtained gel was dried at 105 °C for 24 h. The mixed metal oxides were obtained by heating the gels at 650 °C for 4 h. The Mg₃/Al_{1-x}Ln_x LDH specimens were obtained by reconstruction of MMO powders in water at 50 °C for 6 h under stirring. The samples obtained were characterized by X-ray diffraction (XRD) analysis, Fourier Transform Infrared spectroscopy (FT-IR), thermogravimetric (TG) analysis and scanning electron microscopy (SEM). The luminescent properties of Mg₃/Al_{1-x}Ln_x LDH samples were also investigated. The results revealed that lanthanide element enters into a hydrotalcite structure containing Mg²⁺ and Al³⁺ cations in the brucite-like layers.

Acknowledgement. The work has been done in frame of the project TUMOCS. This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 645660.

- [1] P. Gunawan, R. Xu, J. Phys. Chem C 113 (2009) 17206-17214.
- [2] P. Vicente, M.E. Perez-Bernal, R.J. Ruano-Casero, D. Ananias, P.A.A. Paz, J. Rocha, V. Rives, *Micropor. Mezopor. Mater.* **226** (2016) 209-220.
- [3] T. Posati, F. Costantino, L. Latterini, M. Nocchetti, M. Paolantoni, L. Tarpani, *Inorg. Chem.* 51 (2012) 13229-13236.
- [4] M. Domiguez, M.E. Perez-Bernal, R. Ruano-Casero, C. Barriga, V. Rives, R.A.S. Ferreira, L.D. Carlos, J. Rocha, *Chem. Mater.* 23 (2011) 1993-2004.
- [5] Z. Zhang, G.M. Chen, J.G. Liu, *RSC Adv.* **4** (2014) 7991-7997.
- [6] X.R. Gao, L.X. Lei, L.W. Kang, Y.Q. Wang, Y.W. Lian et al., J. All. Compd. 585 (2014) 703-707.
- [7] D.R.M. Vargas, M.J. Oviedo, F.D. Lisboa, F. Wypych et al., J. Nanomater. (2013) 730153.
- [8] A.H. Tamboli, A.R. Jadhav, W.J. Chung, H. Kim, *Energy* 93 (2015) 955-962.
- [9] A. Smalenskaite, A.N. Salak, M.G.S. Ferreira, A. Katelnikovas, A. Kareiva, *Appl. Clay Sci.* (2017), (*To be published*).