Glass-Ceramic Formation Tendency for System LiCoPO₄-NaCoPO₄

I. Zatovsky¹, N. Klyui¹, J. Li¹, N. Strutynska², W. Han¹, N. Slobodyanik², O. Marchenko²

¹College of Physics, Jilin University, 2699 Qianjin Str., 130012 Changchun, P.R. China ²Taras Shevchenko National University, 64/13 Volodymyrska Str., 01601 Kyiv, Ukraine

Complex phosphates of LiCoPO₄ and NaCoPO₄ are well known as cobalt redox-active electrode materials in rechargeable lithium or sodium batteries [1]. In addition, this compounds is efficient water oxidation catalyst [2]. The possibilities of formation of solid solutions of general compositions $Li_{1-x}Na_xCoPO_4$ have not been reported so far. Herein, we report glass-ceramic formation tendency and electrical conductivity of lithium-sodium cobalt phosphates are examined for Li/Na-ion batteries.

Starting the melt compositions in this study is $(1-x)Li_2O-xNa_2O-2CoO-P_2O_5$ (x = 0, 0.25, 0.5, 0.75 and 1.0). Reagents Li_2CO_3 , Na_2CO_3 , Co_3O_4 and $(NH_4)_2HPO_4$ in appropriate stoichiometric ratios were melted in a platinum crucible at 1000 °C. The melts were exposed during 1 h at the temperature, and then were poured onto a copper sheet to freeze processes. The glass transition and crystallization temperatures were determined by differential thermal analysis (DTA). Obtained samples were subsequently annealed at 600 °C (1 h). Obtained glass-ceramics were characterized by XRD, FTIR, SEM, TEM and impedance spectroscopy method.

Crystalline phases have been obtained in all cases. In particular, XRD pattern revealed low- and high-temperature forms for NaCoPO₄, the estimated ratio α -NaCoPO₄ (space group *Pnma*) : β -NaCoPO₄ (space group *P*6₅) was approximately 1:1. For this sample the phase transition β -NaCoPO₄ $\rightarrow \alpha$ -NaCoPO₄ was observed when heated to 600 °C. For the system (1x)Li₂O-xNa₂O-2CoO-P₂O₅ (x = 0-1.0) the formation of solid solutions Li_{1-x}Na_xCoPO₄ was not happening. Two types of general compositions have been obtained, namely: LiCoPO₄ + NaCoPO₄ (α - and β - polymorphs) at fast cooling or LiCoPO₄ + β -NaCoPO₄ (samples were annealed at 600 °C). Thus, although crystal structures of LiCoPO₄ (space group *Pnmb*, a = 5.922, b = 10.206, c = 4.701 Å) and β -NaCoPO₄ (space group *Pnma*, a = 8.896, b = 6.8007, c = 5.0341 Å) are very similar, but these compounds do not form solid solutions. The report discussed the conductive properties of the obtained composites also.

Acknowledgements. Funding: This work was supported by the national long-term project [no. WQ20142200205] of "Thousand Talents Plan of Bureau of Foreign Experts Affairs" of People's Republic of China.

- [1] D. Kundu, E. Talaie, V. Duffort, L. Nazar, The Emerging Chemistry of Sodium Ion Batteries for Electrochemical Energy Storage, *Angew. Chem. Int. Ed.* **54** (2015) 3431.
- [2] H. Kim, Jimin Park, I. Park, K. Jin, S.E. Jerng, S.H. Kim, K.T. Nam, K. Kang, Coordination tuning of cobalt phosphates towards efficient water oxidation catalyst, *Nat. Commun.* 6 (2015) 8253.