Electric Transport Properties of Sn-Dopped Bi₂Te₂Se Topological Insulators

P. Iwanowski¹, A. Hruban¹, K. Piotrowski¹, R. Diduszko^{1,2}

¹Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland ²Tele and Radio Research Institute, Ratuszowa 11, 03-450 Warsaw, Poland

Topological insulators are new states of quantum matter. In these materials surface states resides in the bulk insulating gap and they are protected by time-reversal symmetry. Bi_2Te_2Se are topological insulators with resistivities twice order of magnitude higher than in Bi_2Te_3 or Bi_2Se_3 .

In this work we described influence of Sn-dopping on transport properties. Bi_2Te_2Se and $Bi_{1.99}Sn_{0.01}Te_2Se$ were grown using modified Bridgman method. The temperature dependent of bulk resistivities, carrier densities and Hall resistivity for both crystals will be compared and discussed.

Figure 1. As-grown Bi₂Te₂Se and Bi_{1.99}Sn_{0.01}Te₂Se single crystals