The Improved Electronic Structure of the LuVO₄ Crystal Evaluated with the Strong Electron Correlation

S.V. Syrotyuk, V.M. Shved

Lviv Polytechnic National University, 12 S. Bandery Str., 79013 Lviv, Ukraine

Due to exceptional optical properties, like wide optical transparency and large birefringence the zircon- and scheelite-type ABO4 compounds are potential candidates for optical isolators, circulators beam displacers and components for polarizing optics [1]. The zircon-type LuVO₄ crystal in tetragonal structure is described by space group 141 and its unit cell containes Z=4 formula units. The lutetium 4f- and vanadium 3d-electrons reveal the strong correlated behaviour, and therefore the LDA and GGA approaches in electronic structure are not adequate. So we employ the hybrid exchange-correlation functional similar to PBE0 [2] one:

$$E_{xc} = E_{xc}^{GGA} + a(E_x^{HF}(y_{4f}) - E_{xc}^{GGA}(r_{4f}) + E_x^{HF}(y_{4d}) - E_{xc}^{GGA}(r_{3d})).$$
(1)

The electronic structure (Fig. 1) has been evaluated by means of the ABINIT code.

Figure 1. Partial and total DOS of the zircon LuVO₄ crystal found with a = 0.25 value.

The obtained band gaps are: $E_g = 3.05 \text{ eV}$ (a = 0), $E_g = 3.46 \text{ eV}$ (a = 0.25) and $E_g = 3.86 \text{ eV}$ (a = 0.45). Last calculated here value is well compared with experimental band gaps: 3.79 eV (reflectance), 3.76 eV (absorption) and 3.87 eV (emission).

- [1] V. Panchal, D. Errandonea, A. Segura, P. Rodríguez-Hernandez, A. Muñoz, S. Lopez-Moreno, M. Bettinelli, *J. Appl. Phys.* **110** (2011) 043723.
- [2] J. P. Perdew, M. Ernzerhof and K. Burke, J. Chem. Phys. 105 (1996) 9982.