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Metoo pochaigkeHHA € mnependavyeHHs JeMN(yBaHHSI i aKyCTH4YHi BJacCTHBOCTI
KOMIIO3UTHUX 0araTomiapoBUX TOHKOCTIHHUX CTPYKTYP. Y po0oTi 0ys10 BU3HAYeHO edeKTHBHI
KOHCTAHTH JKOPCTKOCTI 0araTomapoBHX IUIACTMH KOMIO3UTHOrO THNY 1 JemmdepHi
BJIACTHBOCTi, BUKOPHCTOBYIOUYH MPOLEAYPY, 32CHOBAHY Ha 0araTropiBHeBHX YHCJIOBHX CXeMax.
HaBenenunii MeToa MOAeJIOBAHHSI KOMMIO3WTHHUX JIAMiIHOBAHMX TOHKOCTIHHHX CTPYKTYp He
3aJ1€KUTH Bil CTPOTMX NPHUIYLIEeHb 1010 MOJeJi CTPYKTYpH.

Kuiouogi cjioBa — femnyBanns, 6araromapona miacTuHua, Biopamis

The study aims to predict damping and acoustical properties of composite laminated
thin-walled structures. Effective rigidity constants of sandwich type laminates and damping
properties have been determined by using a procedure based on multi-level numerical
schemes. The present method of laminated composite structures modeling does not rely on
strong assumptions on the model of the structure.
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Inroduction

Structures composed of laminated materials are among the most important structures used in modern
engineering and, especially, in the aerospace industry. Such lightweight and highly reinforced structures
are also being increasingly used in civil, mechanical and transportation engineering applications. The rapid
increase of the industrial use of these structures has necessitated the development of new analytical and
numerical tools that are suitable for the mechanical properties identification and optimization of such
structures [1, 2].

The transmission loss of a sound wave was investigated extensively about half a century ago. Many
studies are limited to the acoustic field theory of isotropic materials. In [3] the wave transmission theory of
elastic bodies is presented. In [4] a transmission matrix for the relationship between the velocity and
pressure in an elastic solid body is obtained. In [5] is determined how the transmission matrix relates to
different layered media, applying the elastic theory in many cases. To achieve effective damping over a
wide frequency range, various methods are used. Active [4] and semiactive vibration control techniques [5]
magnetic vibration dampers [6] and particle dampers [7] can achieve high damping over wide range of
frequencies. However, active damping usually suffers from collateral effects [8,9]. Magnetic and particle
vibration dampers have larger weight penalty. Passive damping using viscoelastic materials [10-13] is
simpler to implement and more cost-effective than semiactive and active techniques.

High order asymptotic approaches

The present paper aims at developing a simple numerical technique, which can produce very
accurate results in comparison with the available analytical solution and also to decide upon the level of
refinement in higher order theory that is needed for accurate and efficient analysis.

Let us consider now such kinematical assumptions for symmetrical three layered plate (see
Fig. 1):
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By substituting Egs. (1), (2), into the following condition
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we obtain the set of linear algebraic equations for the amplitudes
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For grater number of lamina it may be written in the form
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Here HI(,””) - HI(,”) =H,, HS) =H; H and H | are one-half thicknesses of a core and the outer ”-

th layer, respectively. The corresponding frequency equation should be written such as in [3—7]. This is
traditional unifrequency method of linear elastic system investigation.

Timoshenko beam

Timoshenko beam is a particular case of presented above occasions (5) given by the kinematical
hypothesis. By

U(x,z,t)=zvy(x,t), W(x,z,t)=w(x,t) 6)

and (3) we obtain the Timoshenko beam equations [ T ]
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For the case of steady state vibrations
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we obtain
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Here E,G are rigidity modules. They are in the general case the complex frequency dependent functions.

Transition to the Timoshenko beam

The rapid increase of the industrial use of these structures has necessitated the development of
new analytical and numerical tools that are suitable for the mechanical properties identification and
optimization of such structures [14, 15]. The numerical method developed follows a semi-analytical
approach with analytical field applied in longitudinal direction and layer-wise displacement field
employed in transverse direction [16-18]. Identification of elastic properties of laminated plates from the
measured eigen-frequencies has been performed. Elastic constants of laminates have been determined by
using an identification procedure based on experiment design, and multilevel theoretical approach. The
variety of NS and its interaction with testing methods and experimental modeling conditions are
presented in [19, 20].

Let us consider three-layered symmetrical beam (Fig. 1). Its mechanical properties are: core material
(honeycomb polymer filled structure): compressive modulus — 1.076 GPa; tensile modulus — 3.96 GPa;
flexural modulus — 1.020 GPa; shear modulus — 0.638 GPa. Face material (fiber composite material):
tensile modulus — 26 GPa; flexural modulus = 6 GPa; shear modulus = 0.6 GPa.

/C

Fig. 1. The sandwich beam with inner viscoelastic layer (core) and face layers.

In Fig. 2 the values of elastic constants £, G, of equivalent Timoshenko’s beam are presented. For
the elastic modules identification the procedure was applied by comparing the elastic energy of the two
beams: one of them — non-uniform, and the — uniform. The isolines in Fig.4 present the constant values of
difference of Timoshenko beam elastic energy and the energy of analytically modelling beam
I (0,0, +0..0¢c,, +7,.0e,.)dV . Two methods were applied: analytical and approximation [18-20].
”

Fig. 2 presents the theoretically found elasticity constants £, G, for the Timoshenko’s beam analogue of
above beam sample (corresponding to minimum difference of energies). A small variance in values is
caused by the different elastic energy components taken into account in both cases. In the approximation
method the transverse energy component I (6,,0¢,,)dV") is very small and not taken into account. For

”
symmetrical structure with identical face layers by use of Egs. (1-9), the equivalent rigidity Timoshenko’s
beam theory may be found [18-20].
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Fig.2. Equivalent module E,G: (a) — analytical approach; (b) — approximation approach

Estimation of frequency dependent coefficients

Loss factors in layered beams (plates in cylindrical bending) is found by deformations energy
comparison [17-20]:
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where 1), is the loss factor of i-th layer. Here the small transverse stresses are neglected. This result may

be achieved by direct computation by use of stiffness matrix if damping matrix is congruent to the stiffness
matrix.

Il gl +n,la] |4, ]q|+ - +n v a1 |4y Jg| (11)
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la [']4]q]

Here: |A|f stiffness matrix, |g|— vector of displacement component,

corresponding to i-th layer ( |A| =Z|Al.| ). In Fig.3 damping coefficients for fife-layered beam with

damping interlayers for various approximation levels are presented.
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Fig. 3. Theory dependent damping prediction accuracy Fig.4. Damping properties for various thicknesses of
for the five-layered beam damping properties distribution (L=0.6m)
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Here N_ —is a number of terms in longitudinal direction and N_ — in normal to the beam direction

for every layer. The strong model depending quantities may be seen also for middle frequency range.

In previous chapter the frequency influence on the damping properties of sandwich panels may be
seen. For this purpose a few investigations are made for damping properties investigation in frequency
domain. In Fig.4 the frequency depended damping is presented for various thicknesses of damping
properties distribution. Two cases are under investigation: 1) a damping core; 2) a damping outer layer
(properties of layers are such as in Fig.4).

In Fig.4 monotonic damping decreasing for outer damping layer and damping increasing for inner
damping layer may be seen. Damping frequency fluctuations also may be seen. These fluctuations are
correlated with appropriate FRF. The local damping minimums are appropriately coincided with FRF
resonance picks.

Frequency dependent rigidity

Let us consider now the frequency dependent characteristics of laminated beam. In Fig.5 the
frequency dependent rigidity ratios E/Es of three-layered symmetrical beam and Euler beam with bending

H
stiffness Elg = jE(z)zzdz for various layers rigidity are presented.
-H
2
The ratio £/Eg was found by equation E/Eg = f;* /fsi . (Here f;is defined by eigenfrequencies
and by fis—p/2x 1/ESg/(lzp)(>c,~2/L2,ocl =1.875,05 = 4.694,... known console Euler beam eigenfrequencies).

Cases were discussed, when cover layer are ten miles more rigid than inner layer, uniform beam and beam
with ten miles more rigid than core.
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Fig. 5. Equivalent bending rigidity for sandwich

Finally let us consider the influence of damping layer position on the damping and rigid
properties of the lamina. In Fig. 6 the damping properties are presented for various damping layer
position. Here Hf is a thickness of cover layers (3). The results presented in a nondimensional form,

were E, =1,n,=1.
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Fig. 6 Lamina properties for various damping layer position: (a) — the loss factors for the fife-layered beam with
damping interlayer; (b) the first eigen-frequency for the five-layered beam with damping interlayer

In Fig. 6a. the relation of loss factors for the five-layered beam with damping interlayer coefficient

N2 is shown. The depth of the cover rigid layer Hf and layer material rigid module relations Ei/Ej were
changed. In Fig. 6b. the first eigenfrequency for this parameter is presented. In Fig.7 difference of damping
properties behavior in different frequency ranges may be seen.
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Fig. 7. The influence of geometry on the damping in various frequency ranges

Acoustical properties

When a panel is excited acoustically, the frequency at which the speed of the forced bending wave
in the panel is equal to the speed of the free bending wave in the panel is called the coincidence frequency.
It is expected that sound power transmission coefficient is very high at the coincidence frequency of the
panel. An expression for estimating the coincidence frequency of a panel considering the transverse shear
deformation is derived in an earlier study [S]. But the expression for the coincidence frequency is derived
without considering the sound power transmission coefficient of the panel. Instead it is derived by equating
the wavelength of the trace wave in the panel to the wavelength of the free bending wave in the panel.
From the present results it can be seen that the frequency at which the sound power transmission
coefficient is the maximum is the coincidence frequency of the panel. Same expression for coincidence
frequency is obtained from both the approaches. This confirms the correctness of the expression for the
sound power transmission coefficient derived here. To get a better insight into the transmission loss
characteristics, transmission loss of panels for different structural parameters are presented.

Consider a panel with an incident acoustic field (Fig.8).
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Fig.8. Panel in plain acoustic field (plain wave)

An external excitation in the form of a plane sound wave of frequency is assumed to be incident on
the top skin. Sound power transmission coefficient is defined as the ratio of the intensity of the transmitted

b is the

b

sound to the intensity of the incident sound. If i s the intensity of the incident sound wave and

T=

intensity of the transmitted sound wave, the sound power transmission coefficient t is defined by 5

4
The beam acts as a partition in the air of specific acoustic impedances, where P and c are the
density and speed of sound in the air. Also, a sound transmission loss, STL, is defied which is the common

B -1
index Sfl—l(’log(T ) 21].
The net acoustic pressure is

q=pit Dyt Dyrad — Dt (12)
We take the same form for all this acoustic pressures as for displacements (8) (on the plate surfaces)
pi= pioeicoteilcxsin(p , P = proeiwteikxsinq) s Py = pmdoeiwteikxsinq} . Py = ptoei(oteikxsin(p (13)

Since the medium present on both sides of the plate has the same properties, the sound power
radiated to both sides of the panel are equal and hence ¥t = Prad | The requirement of the continuity of the
particle velocity necessitates that i = Pr . Using the above results and substituting Eq. (7) in Eq. (11), the
external force on the plate due to acoustic excitation becomes

CI=2(P1' —Pt) (14)

The amplitude of the displacement of the plate is related to the amplitude of the transmitted sound
wave by the expression

e Pt COs @
10P €4 (15)
Substituting Egs. (14), (15) by Eq. (9) yields
2 2
cofi—i2eosel g 2(SGks) > - SGk] + Spw’
2paca(x) EJkS +SG —-plo (16)

Let us now consider some numerical examples, (£ =200MPa, G =50MPa,
p =200 kg/m3 , h =0.0254m) the transmission loss (7L) or (Stl) [21] function:

T:lOlogﬁ—l\‘ (17)
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are presented here for the light foam material beam. In Fig.9. TL is presented for various angles of incident
sound waves (given in rad.).
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Fig.9. TL for various values angles © of incident sound Fig.10. TL for various G (¢ =1.2rad
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In Fig. 10. TL is presented for various shear coefficients G . In Fig. 11. the influence of damping is
presented. The viscous frequency of independent bending mode and shear mode of damping are considered

E = E,(1.+iDempE), G = G,(1.+ iDempG) (18)
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Fig.11. Damping dependent TL Fig. 12. TL for frequency dependent coefficients

At last the influence of frequency on rigidity and damping is under discussion. In Fig.12. TL
function is presented for parameter and for varying with frequency parameters.

Ep=E(l.+dE* 1) G =Gll+dE* )

DempE g :DemPE(l-"‘dD*fz) DempG ¢ =DempG(1.+dD*f2) )

Simple quadratic approximations are applied here. In Fig.17. TL are presented for the sandwich type beam
with the soft core (positive values of dD) and the soft cover sheets (negative dD) (see Fig.4-12).

Beam with the DVA

One-mass DVA. Damped DV As are applied to allow for energy dissipation, thereby motivating the
term ‘absorber’. These realistic absorbers furthermore reduce their sensitivities to parameter variations
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from optimal values and reduce the primary system motions at the resonance frequencies, while increasing
their effective bandwidth, as compared to their undamped examples. Consider the viscously damped DVA
(Fig.13) with an elastic and a viscous damping elements, between the masses. Detailed descriptions of the
fundamentals of the such DVA’s are given in [22-24].
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Fig.13 . One-mass DVA Fig.14. Beam with the DVA

Let us now consider a layered beam with locally attached DVA (Fig.14 ). Taking into account only
the first form of vibration we obtain the similar as in (7) set of equations. Only one additional equation on
DVA is applied:

2 .
—MA(D WA+(KA+Z(DCA)(WA—W)=O. (20)
In Fig. 15 TL is presented for DVA parameters.
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Fig. 15 The DVA’s mass influence Fig.16 Damping influence

In Fig.16 the DVA’s mass influence on 7L is presented. In Fig.16 the influence of damping in DVA
is presented.

Concluding remarks

The present paper is the first attempt at proposing a novel procedure to derive damping and sound
isolation parameters for forced vibrating sandwich plates. The main advantage of the present method is that
it does not rely on strong assumptions on the model of the plate. The key feature is that the raw models can
be applied at different vibration conditions of the plate by a suitable analytical ore approximation method.
The same multistage technique may be applied for multi-scale optimization problems. In the future the
extension of the present approach to various sandwich plates will be performed in order to test various
experimental conditions.
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