УДК 621.315.562

А.В. Заслонкін, З.Д. Ковалюк, І.В. Мінтянський, О.І. Янчук Чернівецьке відділення Інституту проблем матеріалознавства НАН України

ЕЛЕКТРИЧНІ ВЛАСТИВОСТІ ШАРУВАТИХ КРИСТАЛІВ In₂Se₃ ЛЕГОВАНИХ Cd, J TA Cu

DOPED WITH Cd, I, AND Cu

© Заслонкін А.В., Ковалюк З.Д., Мінтянський І.В., Янчук О.І., 2002

A.V. Zaslonkin, Z. D. Kovalyuk, I.V. Mintyanskii, O.I. Yanchuk ELECTRICAL PROPERTIES OF LAYERED In₂Se₃ CRYSTALS

© Zaslonkin A.V., Kovalyuk Z.D., Mintyanskii I.V., Yanchuk O.I., 2002

У діапазоні 80–400 К досліджено електричні властивості спеціально нелегованих та легованих 0,1 мас. % кадмію, йоду чи міді монокристалів In_2Se_3 гексагональної фази. Значна зміна концентрації вільних електронів зафіксована лише при введенні домішки галогену: від 4,9·10¹⁷ (In_2Se_3) до 1,6·10¹⁸ см⁻³ при 300 К. Отримана температурна залежність рухливості електронів вздовж шарів пояснена їх взаємодією з акустичними фононами і нейтральними домішками. Встановлено, що найбільш істотно при легуванні змінюється провідність впоперек шарів, зокрема, до 10² разів для In_2Se_3
Cd>

Electrical properties of layered In_2Se_3 are investigated between 80 and 400 K for intentionally undoped and containing 0.1 wt.% of cadmium, iodine, or copper single crystals of the hexagonal phase. We have found that the essential change of electron density at 300 K from $4,9\cdot10^{17}$ cm⁻³ for undoped In_2Se_3 to $1,6\cdot10^{18}$ cm⁻³ takes place after doping with iodine. The obtained changes of the Hall mobility along the layers with temperature are explained by the interactions of electrons with acoustic phonons and neutral impurities. It is established that the conductivity across the layers is the most essentially affected by doping. In particular, for In_2Se_3 <Cd> samples it is increased nearly by two orders of magnitude.

Вступ. Селенід індію In₂Se₃ належить до напівпровідникових матеріалів з шаруватою кристалічною структурою. Він може бути використаний при виготовленні детекторів іонізуючого випромінювання, давачів малих часток та ін. Опубліковані результати досліджень фізичних властивостей кристалів [1–4] значно відрізняються, що пояснюється як значною дефектністю структури матеріалу, так і наявністю різних (α , β і γ) його кристалічних фаз. Електричні параметри In₂Se₃ чутливі як до методу вирощування, так і до подальшої термічної обробки. Зокрема, при $\alpha \rightarrow \beta$ (≈ 200 °C) та $\beta \rightarrow \gamma$ (≈ 650 °C) переходах високопровідний матеріал стає майже ізолятором.

Отримання кристалів з широким спектром властивостей, визначення особливостей дефектоутворення визначають актуальність дослідження легованих зразків. У даній роботі вивчаються електричні властивості спеціально нелегованих та легованих 0,1 мас. % кадмію, йоду чи міді монокристалів In₂Se₃. Ставилося за мету порівняти вплив лігатур з різних груп періодичної системи елементів, отримати параметри легованих зразків для співставлення їх

з такими для сполук впровадження з I-, Cu-, та Cd-інтеркалянтами, що є предметом окремого дослідження.

Методика досліджень. Монокристали вирощувалися методом Бріджмена зі стехіометричного розплаву при температурному градієнті на фронті кристалізації 15 град/см, швидкості росту 1 мм/год та внутрішньому діаметрі ампул 15 мм. Отримані матеріали мали яскраво виражену шаруватість структури по всій довжині зливка. Проведений рентгенівський аналіз показав, що вони мають структуру гексагональної α -фази з періодами a = 4,031 Å і c = 19,2 Å.

Зразки для вимірювань отримували сколюванням лезом з вирізаної монокристалічної шайби. Температурні залежності коефіцієнта Холла R_H (**B**||**C**), електропровідностей вздовж ($\sigma_{\perp C}$) та перпендикулярно ($\sigma_{\parallel C}$) до шарів і холлівської рухливості $\mu_{\perp C}$ вивчалися в діапазоні 80–400 К. Експерименти виконувалися на постійному струмі та магнітному полі для кристалів у формі прямокутних паралелепіпедів з типовими розмірами 10×2,3×0,6 мм³. Індієві контакти напаювалися у класичній конфігурації. Виміри $\sigma_{\parallel C}$ проводились чотиризондовим методом з контактами, розташованими на протилежних сколотих поверхнях: два з них використовувалися як струмові, а два інші – як зондові. Варто відмітити, що електричні властивості сполуки були стабільними при дослідженні в заданому інтервалі температур та відтворюваними в режимі нагрів –охолодження.

Експериментальні результати та їх обговорення. Для всіх досліджуваних кристалів характер температурної залежності компонент електропровідності істотно відрізняється, змінюючись з "металічного" при русі носіїв заряду вздовж шарів на виражений напівпровідниковий – впоперек шарів (рис. 1). З холлівських вимірів (рис. 2) випливає, що як нелеговані зразки, так і з домішками Cd, Cu чи J мають *n*-типом провідності. Концентрація вільних електронів $n = 1/|eR_H|$ для In₂Se₃ становить 3,7×10¹⁷ см⁻³ при 80 К та зростає до 5,0×10¹⁷ см⁻³ при 400 К. Вплив легування кадмієм та міддю проявляється у незначному пониженні як електропровідності вздовж шарів, так і концентрації електронів у зоні провідності. На відміну від цього домішка йоду є більш електрично активною: введення її до складу сполуки приводить до істотного зростання $\sigma_{\perp C}$ через збільшення у 4–6 разів концентрації електронів у зоні провідності.

Передбачається, що серед вивчених домішок тільки йод утворює з In_2Se_3 твердий розчин заміщення. Радіус його атома відрізняється від радіуса атома селену не більше ніж на 15 % при незначній різниці електровід'ємностей. Ці фактори й визначають можливість заміщення халькогену у вузлах кристалічної ґратки йодом. Енергія відриву зайвого для утворення валентного зв'язку електрона згідно з водневоподібною моделлю є малою (~0,01 eB). Тоді отримані закономірності можна пояснити значною іонізацією у дослідженому діапазоні температур, пов'язаних з йодом дрібних донорних рівнів. Типові величини електричних параметрів досліджуваних монокристалів при різних температурах узагальнені в таблиці.

На рис. З показано холлівську рухливість електронів вздовж шарів ($\mu_{\rm H} = R_H \sigma_{\perp C}$) як функцію температури. Для спеціально нелегованих кристалів $\mu_{\perp C}$ понижується при зростанні температури у всьому досліджуваному діапазоні. При цьому показник степеня α в залежності $\mu_{\perp C} \sim T^{-\alpha} \epsilon$ максимальним в області високих температур ($\alpha \approx 0.85$). Відсутність максимуму чи тенденції до загину $\mu_{\perp C}(T)$ навіть при найнижчих температурах дозволили знехтувати при аналізі розсіюванням електронів на іонізованих домішках. Враховано істотну відмінність досліджуваних кристалів від традиційних матеріалів, в яких вакантні положення є зарядженими. Для In₂Se₃ кожне третє місце в катіонній підгратці є вакантним. Як наслідок, він містить велику кількість власних стехіометричних вакансій індію, які є електрично неактивними. Тому, як і у роботі [3], отриману зміну рухливості можна якісно пояснити комбінованою взаємодією електронів з тепловими коливаннями ґратки та нейтральними домішками.

*Puc. 1. Температурні залежності електропровідності вздовж та впоперек шарів для In*₂Se₃ (1 і 11, відповідно), In₂Se₃<Cd> (2 і 22), In₂Se₃<J> (3 і 33) та In₂Se₃<Cu> (4 і 44)

Рис. 2. Температурні залежності концентрації електронів для In_2Se_3 (1), $In_2Se_3 < Cd > (2), In_2Se_3 < J > (3)$ та $In_2Se_3 < Cu > (4)$

Nº	Матеріал	$\mu_{\perp c,}$ см ² /Вс			n, cm ⁻³			$\sigma_{\perp c}, \operatorname{Om}^{-1} \operatorname{cm}^{-1}$		
		80 K	300 K	400 K	80 K	300 K	400 K	80 K	300 K	400 K
1	In ₂ Se ₃	955	405	324	3,7 10 ¹⁷	4.9 10 ¹⁷	5,0 10 ¹⁷	56,8	31,9	26,1
2	$In_2Se_3 < Cu >$	752	282	232	3,4 10 ¹⁷	4.7 10 ¹⁷	4,8 10 ¹⁷	40,7	21,0	17,7
3	$In_2Se_3 < Cd >$	626	273	226	3,5 10 ¹⁷	4.5 10 ¹⁷	4,7 10 ¹⁷	35,3	19,7	17,1
4	$In_2Se_3 < J >$	878	428	308	$1,6\ 10^{18}$	2.24 10 ¹⁸	2,7 10 ¹⁸	232,7	153,4	128,0
No	Матеріал		1	σ _{∥с} , Ом ⁻¹ см	-1	•	•	$A(\sigma_{\perp}c/c)$	σ _{∥c})	•
Nº	Матеріал	80	К	σ_{∥с}, Ом ⁻¹ см 300 К	-1 4(00 К	80 K	A(σ _⊥ c/ 300 k	σ _{llc})	400 К
<u>№</u> 1	Матеріал In ₂ Se ₃	80 8,6·	К 10 ⁻²	<mark>σ_{∥с}, Ом⁻¹см</mark> 300 К 6,4·10 ⁻¹	-1 40	00 K 4,4	80 K 660	$\frac{A(\sigma_{\perp}c/s)}{300 \text{ k}}$	σ _{llc})	400 К 5,9
<u>№</u> 1 2	Матеріал In ₂ Se ₃ In ₂ Se ₃ <cu></cu>	80 8,6· 6,8·	К 10 ⁻² 10 ⁻³	<mark>σ_{∥с}, Ом⁻¹см</mark> 300 К 6,4·10 ⁻¹ 3,5·10 ⁻²	-1 4(2 6,3	00 K 4,4 3·10 ⁻²	80 K 660 6073	$\begin{array}{c} A(\sigma_{\perp}c/s)\\ 300 \text{ k}\\ 50\\ 599\end{array}$	σ _{llc})	400 K 5,9 283
№ 1 2 3	Матеріал In ₂ Se ₃ In ₂ Se ₃ <cu> In₂Se₃ <cd></cd></cu>	80 8,6· 6,8· 4,1·	K 10^{-2} 10^{-3} 10^{-3}	$\frac{\sigma_{\parallel c}, Om^{-1}cm}{300 \text{ K}}$ $\frac{6,4 \cdot 10^{-1}}{3,5 \cdot 10^{-2}}$ $2,0 \cdot 10^{-2}$	-1 40 2 6,2 2 4,0	00 K 4,4 3·10 ⁻² 5·10 ⁻²	80 K 660 6073 8580	A(σ⊥c/- 300 k 50 599 975		400 K 5,9 283 420

Електричні параметри селеніду індію, нелегованого і легованого домішками Cd, J, Cu

Числові підрахунки рухливості проведені нами на основі співвідношення

$$\frac{1}{\mu_{\perp C}} = \frac{1}{\mu_{\rm TM}} + \frac{1}{\mu_{\rm H}},\tag{1}$$

де μ_{ϕ} та μ_{μ} – рухливості електронів, пов'язані з розсіюванням на фононах та нейтральних домішках, відповідно. При цьому μ_{ϕ} знаходилося з найкращого збігаання розрахованої та експериментальної залежностей, а μ_{μ} визначалося за формулою Ергінсоя

$$\mu_{\mu} = \frac{m^* e^3}{20\varepsilon\hbar^3 N},\tag{2}$$

де N – концентрація нейтральних домішок, $m^* = 0.24m_0$ та $\varepsilon = 9.5$ [3]. Результати аналізу комбінованої рухливості для In_2Se_3 подані на рис. З суцільною лінією, а парціальні вклади

фононної та домішкової гілок – пунктирними. Знайдено, що концентрація нейтральних домішок $N \approx 2,7 \cdot 10^{17}$ см⁻³, а рухливість, пов'язана з розсіюванням на фононах, змінюється з температурою по закону $\mu_{\phi} \sim T^{-1,3}$.

Відомо, що для невиродженого електронного газу при розсіюванні на акустичних фононах $\alpha = 3/2$, а при сильному виродженні $\alpha = 1$. Враховуючи високу концентрацію вільних електронів, що при T = 80 К незначно нижча ефективної густини станів у зоні провідності In₂Se₃ (N_c $\approx 4,7\cdot10^{17}$ см⁻³), отриману залежність $\mu_{\phi}(T)$ можна вважати зумовленою взаємодією з акустичними фононами.

Рухливість є одним з параметрів напівпровідникових матеріалів, які найбільш чутливі до їх чистоти та структурної досконалості. Порівняно з літературними даними [1–4], досліджувані монокристали характеризуються порівняно високими значеннями рухливості електронів вздовж шарів, а отже, і кращою якістю. Як випливає з рис. 3, легування In₂Se₃ домішками Cd та Cu приводить до більш значного пониження $\mu_{\perp C}$ у всій температурній області, ніж при легуванні йодом.

Спостережувані для багатьох шаруватих кристалів високі значення анізотропії електропровідності ($\sigma_{\perp C}/\sigma_{\parallel C} = 10^2 - 10^5$) не є відображенням двовимірного характеру основних енергетичних зон (анізотропії ефективних мас), а визначаються присутністю неконтрольованих або легуючих домішок в їх міжшарових ван-дер-ваальсових просторах. Вони формують додаткові енергетичні бар'єри для руху носіїв впоперек шарів, внаслідок чого мають місце різні механізми електропровідності вздовж кристалографічної осі C, включаючь стрибкові різного типу, аномальні значення величини $\sigma_{\perp C}/\sigma_{\parallel C}$ та її істотне зростання при пониженні температури. Для нелегованого селеніду індію анізотропія електропровідності змінюється від 660 при T = 80 K до 5,9 при 400 K. В літературі подані значення компонент провідності тільки при кімнатній температурі ($\sigma_{\perp C} \sim 20 \text{ Om}^{-1} \text{ см}^{-1}$, $\sigma_{\parallel C} \sim 10^{-2} \text{ Om}^{-1} \text{ см}^{-1}$, $\sigma_{\parallel C} \sim 10^{-2} \text{ Om}^{-1} \text{ см}^{-1}$ [1, 2]). Зафіксована нами при тій самій температурі величина $\sigma_{\perp C}/\sigma_{\parallel C} \in$ значно нижчою і свідчить про меншу кількість міжшарових дефектів. Оцінка енергетичного бар'єра між шарами, проведена в низькотемпературній області на основі співвідно-шення $\sigma_{\perp C}/\sigma_{\parallel C} \sim \exp(\Delta E_6/kT)$, дає величину $\Delta E_6 \approx 10$ меВ.

Із досліджених параметрів найбільш значної зміни при легуванні зазнає провідність впоперек шарів. Введення домішки Cd приводить до 20–100-кратного, а Cu – 10–70-кратного пониження $\sigma_{\parallel C}$ (див. таблицю). Це, ймовірно, свідчить про локалізацію цих домішок у міжшарових проміжках кристала, утворення ними скупчень дефектів, що обмежують рухливість електронів перпендикулярно до шарів. При легуванні йодом, навпаки, відповідна компонента провідності зростає, зокрема, більше ніж на порядок при азотних температурах. Як наслідок, спостерігається зростання анізотропії електропровідності $\sigma_{\perp C}/\sigma_{\parallel C}$ для In₂Se₃ з домішками Cd та Cu, що більш істотне при високих температурах і становить значення 45–70 при 400 К. Для In₂Se₃ < 0,1 % J > в діапазоні 80–400 К анізотропія змінюється лише на порядок, що приблизно вдвічі нижче ніж для нелегованого матеріалу.

Висновки. Порівняно з літературними даними досліджені нелеговані монокристали In₂Se₃ володіють високими значеннями рухливості електронів вздовж шарів та низькою анізотропією електропровідності. Серед вивчених лігатур тільки введення йоду приводить

до утворення мілких донорних рівнів в забороненій зоні матеріалу та значного зростання концентрації вільних носіїв. Легування Cu та Cd приводить до істотного пониження, а йодом – до зростання електропровідності впоперек шарів.

Micocci G., Tepore A., Rella R., Siciliano P. // Phys. Stat. Sol. – 1991. – 126A. – P. 437–442.
 De Blasi C., Drigo A.V., Micocci G., TeporeA. // J. Cryst. Growth. – 1989. – 94. – P. 455–458.

3. Julien C., Eddrief M., Balkanski M., Hatrikraniotis E., Kambas K. // Phys. Stat. Sol. – 1985. – 88A. – P. 687–695.

4. Julien C., Balkanski M. // Mater. Sci. Eng. – 1996. – **B38**, № 1. – P. 1–8.

УДК 621.315.592

Д.М. Заячук, В.І. Кемпник*, Є.О. Полигач, Є.І. Слинько**, О.Г. Хандожко*** Національний університет "Львівська політехніка", кафедра напівпровідникової електроніки, *HBO "Карат", **Чернівецьке відділення ІПМ НАН України ***Чернівецький Національний Університет, кафедра радіотехніки

ОСОБЛИВОСТІ ЕПР АКТИВНОСТІ ДОМІШКИ ГАДОЛІНІЮ В КРИСТАЛАХ ТВЕРДИХ РОЗЧИНІВ ТЕЛУРИДІВ СВИНЦЮ І ОЛОВА

© Заячук Д.М., Кемпник В.І., Полигач Є.О., Слинько Є.І., Хандожко О.Г., 2002

D.M. Zayachuk, V.I. Kempnyk, Ye.O. Polyhach, E.I. Slynko, O.G. Khandozhko PARTICULARITIES OF EPR ACTIVITY OF GADOLINIUM IMPURITY IN LEAD AND TIN TELLURIDES SOLID SOLUTION CRYSTALS

© Zayachuk D.M., Kempnyk V.I., Polyhach Ye.O., Slynko E.I., Khandozhko O.G., 2002

Проведено експериментальні дослідження спектрів ЕПР кристалічних і порошкоподібних зразків $p-Pb_{1-x-y}Sn_yGd_yTe$ (x = 0,2, y = 0,01). Вперше показано, що розтирання зразків досліджуваних матеріалів у порошок, а також їх низькотемпературний відпал переводить іони домішки Gd з ЕПР неактивного стану Gd^{2+} у ЕПР активний стан Gd^{3+} , в той час як високотемпературний відпал гасить сигнал ЕПР іонів Gd. Одержані експериментальні результати інтерпретуються на основі моделі, згідно з якою зарядовий стан Gd^{3+} домішки гадолінію в телуридах свинцю і олова є складовою частиною комплексу "домішка заміщення Gd – вакансія Te"

EPR experimental study of both crystalline and powder $p-Pb_{1-x-y}Sn_yGd_yTe$ samples (x = 0,2, y = 0,01) has been carried out. First it was shown, that grinding investigated materials into powder as well as their low-temperature annealing turns *Gd* impurity ions from EPR non-active Gd^{2+} state to EPR Gd^{3+} one, whereas high-temperature