Л.О. Василечко, С.В. Фадссв, Н.В. Редько, М. Берковський*

Національний університет "Львівська політехніка", кафедра напівпровідникової електроніки * Інститут Фізики Польської Академії Наук

КРИСТАЛІЧНА СТРУКТУРА SmGaO₃ ТА ТВЕРДИХ РОЗЧИНІВ Nd_{1-x}RE_xGaO₃ (RE = Pr, Sm)

© Василечко Л.О., Фадєєв С.В., Редько Н.В., Берковський М., 2002

L.O. Vasylechko, S.V. Fadeev, N. Red'ko, M. Berkowski

CRYSTAL STRUCTURE OF SmGaO₃ AND Nd_{1-x}RE_xGaO₃ (RE = Pr, Sm) SOLID SOLUTIONS.

© Vasylechko L.O., Fadeev S.V., Red'ko N. V, Berkowski M., 2002

Кристалічна структура SmGaO₃ та твердих розчинів Nd_{1-x}Pr_xGaO₃ (x = 0,25; 0,5; 0,75) і Nd_{1-x}Sm_xGaO₃ (x = 0,25; 0,5) досліджена методом рентгенівської порошкової дифракції. При кімнатній температурі досліджені кристали мають ромбічно-деформовану перовскитну структуру типу GdFeO₃ (просторова група *Pbnm*, Z = 4). Ізовалентне заміщення в ряду Sm – Nd – Pr веде до зростання середнього радіуса RE-катіонів, і в результаті до закономірного зростання об'єму елементарної комірки та зменшення деформації перовскитної структури.

Crystal structures of SmGaO₃ and Nd_{1-x}Pr_xGaO₃ (x = 0,25; 0,5; 0,75), and Nd_{1-x}Sm_xGaO₃ (x = 0,25; 0,5) solid solutions has been studied by means of X-ray powder diffraction technique. The crystals investigated belong to orthorhombically distorted perovskite-like structure of GdFeO₃ –type (space group *Pbnm*, Z = 4) at room temperature. Isovalence substitution in the series Sm – Nd – Pr led to increasing of the average ionic radii of RE-cations, and, consequently, to naturally rising of the cell volume and decreasing of the perovskite structure deformation.

Вступ. Кристали рідкісноземельних галатів з перовськітоподібною структурою є важливими функціональними матеріалами електронної техніки, що використовуються як підкладкові матеріали для епітаксії плівок ВТНП та сполук із гігантським магніторезистивним ефектом [1–4], а також шарів нітриду Галію [5–6]. Основним критерієм для вибору кристала-підкладки для епітаксії є близькість значень періодів елементарних комірок та коефіцієнтів термічного розширення для матеріалу підкладки та епітаксійного шару. За цими параметрами, а також чудовими діелектричними властивостями (низькі значення діелектричної проникливості (ε) та тангенса кута діелектричних втрат (tg δ)), одним із найперспективніших підкладкових матеріалів є галат неодиму NdGaO₃. Використовуючи ізовалентне заміщення атомів неодиму в структурі NdGaO₃ катіонами інших РЗЕ, можна цілеспрямовано впливати на структурні параметри цих кристалів, таким чином ще більше розширюючи сферу їх можливого використання.

Ця робота є продовженням систематичних досліджень кристалів рідкісноземельних галатів з перовськітоподібними структурами [7–10], в ній розглядаються структурні особливості твердих розчинів, що утворюються в системах NdGaO₃ – PrGaO₃ та NdGaO₃ – SmGaO₃.

Методика експерименту. Зразки для досліджень – монокристали твердих розчинів $Nd_{1-x}Pr_xGaO_3$ (x = 0,25; 0,5; 0,75) та $Nd_{1-x}Sm_xGaO_3$ (x = 0,25; 0,5) – були вирощені методом безтигельної зонної плавки [12]. Полікристалічний зразок номінального складу $Sm_2O_3:Ga_2O_3$ був одержаний електродуговою плавкою керамічного матеріалу згідно з методикою, описаною в [11]. Дослідження кристалічної структури твердих розчинів проводилось методом порошкової дифракції (дифрактометр ДРОН-3.0, Cu K_{α} – випромінювання, $\theta/2\theta$ -сканування в діапазоні кутів 20 19–140° з кроком 0,02° і часом експозиції 10 с). Уточнення кристалічної структури проводилось повнопрофільним методом Рітвельда за допомогою пакета програм WinCSD [13]. Уточнювались періоди елементарних комірок, атомні координати та константи теплових коливань (в анізотропному наближенні для атомів РЗЕ та в ізотропному – для атомів галію та кисню). Як початкові координати при уточненні структур були вибрані положення атомів в структурі NdGaO₃, одержані методом монокристала [14].

Експериментальні результати та їх обговорення. Аналіз порошкових дифрактограм зразків $Nd_{1-x}Pr_xGaO_3$ (x = 0,25; 0,5; 0,75) показав, що всі ці кристали є однофазними зразками з ромбічно деформованою перовськітоподібною структурою типу GdFeO₃. Уточнення кристалічних структур твердих розчинів повнопрофільним методом Рітвельда виявило добре збігання між експериментальними та розрахованими дифракційними профілями (рис. 1) і привело до заключних координатних та теплових параметрів атомів, поданих у табл. 1. Кристали Nd_{0.75}Sm_{0.25}GaO₃ та Nd_{0.5}Sm_{0.5}GaO₃ також виявилися однофазними зразками, що кристалізуються в структурному типі GdFeO₃. Однак дифракційна картина зразка номінального складу Sm₂O₃:Ga₂O₃ виявилась значно складнішою. Згідно з літературними даними [15-17], ортогалати РЗЕ із іонними радіусами, меншими від неодиму (Sm - Lu), не можуть бути отримані методами твердофазного синтезу. Ці перовськіти можна одержати або розкладом відповідних гранатових фаз при високих тисках і температурах (45 кБар, 1000 °C), використовуючи розплав NaOH [17], або перегрівом розплаву 0,5 RE₂O₃ - 0,5 Ga_2O_3 (RE = Sm – Er) [18]. Тим не менше, використовуючи метод електродугової плавки попередньо відпаленої при 1000 °С еквімолярної суміші оксидів Sm₂O₃ та Ga₂O₃, нам вдалось отримати зразок із порівняно високим вмістом перовськітної фази (~ 57 мас. %). Крім рефлексів SmGaO₃, на дифрактограмі зразка були присутні також піки гранатової фази Sm₃Ga₅O₁₂ (~ 27 мас. %) та сполуки Sm₄Ga₂O₉ (~ 16 мас. %). Отримані значення періодів елементарних комірок для SmGaO₃ та Sm₄Ga₂O₉ добре узгоджувалися із літературними даними для цих сполук [16, 17, 19], тоді як для гранатової фази було виявлене суттєве збільшення параметра кубічної ґратки (a = 12,512(2) \check{A}) порівняно із даними для Sm₃Ga₅O₁₂ (a = 12,434 Å). Таке зростання періоду кристалічної гратки гранатової фази можна пояснити частковим заміщенням атомів галію, розміщених в октаедричних позиціях, атомами самарію, які мають значно більший іонний радіус (згідно з [20], $r(Ga^{3+}) = 0.62$ Å, $r(Sm^{3+}) = 0.96$ Å). Про наявність області гомогенності гранатової фази в системі Sm₂O₃ – Ga₂O₃ раніше повідомлялось в роботі [16]; при цьому параметр елементарної кубічної комірки змінювався в межах 12,43 Ă – 13,50 Ă.

Порівняно високий вміст перовськітної фази в зразку Sm₂O₃:Ga₂O₃ дозволив нам не тільки встановити періоди елементарної комірки, а й провести уточнення координат атомів в структурі SmGaO₃, використовуючи повнопрофільний метод Рітвельда. Перед уточненням

структури рефлекси інших фаз були видалені з експериментальної дифрактограми за допомогою програми PROFAN. Одержані значення структурних параметрів для SmGaO₃ наведені в табл. 1 та 2. Незважаючи на порівняно високі значення *R*-факторів, періоди елементарних комірок та міжатомні віддалі, пораховані на основі уточнених координат атомів в структурі SmGaO₃, добре вписуються в загальні залежності, що спостерігаються в ряду структур SmGaO₃ – NdGaO₃ – PrGaO₃ (рис. 2, a-e).

Рис. 1. Експериментальна, теоретична дифрактограми та різницевий профіль Nd_{0.5}Pr_{0.5}GaO₃ та Nd_{0.75}Sm_{0.25}GaO₃

Рис. 2. Параметри елементарної комірки, середні катіон-аніонні і катіон-катіонні віддалі та їх співвідношення в структурах SmGaO₃, Nd_{1-x}Pr_xGaO₃ та Nd_{1-x}Sm_xGaO₃ залежно від радіуса R – катіона

Таблиця 1

1		1	1	<i>U</i> / 1	A A U		U
Атоми	Параметри	SmGaO ₃	Nd _{1-x} Sm _x GaO ₃		Nd _{1-x} Pr _x GaO ₃		
Аюми			0,25	0,5	0,25	0,5	0,75
	a (Å)	5.37809(5)	5.41432(3)	5.40273(6)	5.43538(3)	5.44260(3)	5.44952(4)
	<i>b</i> (Å)	5.51661(6)	5.50183(3)	5.50661(5)	5.49590(3)	5.49397(3)	5.49245(4)
	<i>c</i> (Å)	7.65501(8)	7.69379(4)	7.68118(8)	7.71310(4)	7.71809(5)	7.72349(7)
	$V(\text{\AA})$	227.115(7)	229.188(4)	228.521(7)	230.408(4)	230.782(4)	231.174(6)
Nd(Sm,Pr)	x	-0.0131(3)	-0.0106(2)	-0.0107(3)	-0.0087(2)	-0.0087(2)	-0.0073(3)
$(x y \frac{1}{4})$	У	0.0498(2)	0.0450(1)	0.0467(2)	0.0414(1)	0.0392(1)	0.0379(1)
	$B (eq)^{a}$	0.87(3)	0.34(2)	0.48(3)	0.52(2)	0.32(2)	0.29(2)*
	B_{11}	0.86(3)	0.31(3)	0.65(5)	0.44(4)	0.35(3)	0.17(4)
	B_{22}	0.86(3)	0.30(3)	0.41(4)	0.57(3)	0.29(3)	0.33(3)
	B ₃₃	0.88(3)	0.39(4)	0.39(4)	0.56(4)	0.24(4)	0.28(4)
	B_{12}	0.52(6)	0.05(5)	-0.06(8)	-0.05(6)	0.01(6)	-0.06(6)
	B_{13}, B_{23}	0	0	0	0	0	0
Ga	$B (eq)^{a}$	1.66(5)	0.96(5)	0.55(4)	0.89(5)	0.64(3)	0.58(3)*
(1/2 0 0)							
O1	x	0.101(2)	0.0794(13)	0.094(3)	0.0860(15)	0.0796(15)	0.074(2)
$(x y \frac{1}{4})$	У	0.448(2)	0.4755(12)	0.463(3)	0.4771(13)	0.4793(13)	0.471(2)
	$B (eq)^{a}$	1.078	0.235	1.4(3)	0.425	0.760	0.453
O2	x	0.218(2)	0.2979(11)	0.202(2)	0.2866(12)	-	0.272(2)
		-0.316(2)	-0.2070(11)	-0.292(2)	-0.2800(12)	0.2867(13)	-0.272(2)
(x y z)	У	0.277(2)	0.2811(11)	0.287(2)	0.2801(12)	0.2837(13)	0.279(2)
	z	0.0349(13)	0.0457(7)	0.0488(15)	0.0451(8)	0.0443(8)	0.0498(9)
	$B (eq)^{a}$	1.078	0.235	0.6(2)	0.425	0.760	0.453
	R_I	0.1403	0.0782	0.0826	0.0732	0.0769	0.0808
	R_P	0.2102	0.1231	0.1664	0.1229	0.1216	0.1455

Кристалографічні характеристики SmGaO₃, Nd_{1-x}Pr_xGaO₃ та Nd_{1-x}Sm_xGaO₃

^a B(eq) = $1/3[B_{11}(a^*)^2 a^2 + \dots 2B_{23} b^* c^* bc \cos\alpha]$

Таблиця 2

Міжатомні віддалі в структурах SmGaO₃, Nd_{1-x}Pr_xGaO₃ та Nd_{1-x}Sm_xGaO₃

	SmGaO	Nd _{1-x} Sm _x GaO ₃		Nd _{1-x} Pr _x GaO ₃			
	SillOaO ₃	0.25	0.5	0.25	0.5	0.75	
1	2	3	4	5	6	7	
R-O1	2.321(14)	2.366(7)	2.31(2)	2.388(10)	2.359(8)	2.324(8)	
R-2O2	2.450(12)	2.402(6)	2.363(12)	2.421(8)	2.394(7)	2.408(7)	
R-O1	2.323(15)	2.418(7)	2.36(2)	2.421(9)	2.465(7)	2.449(7)	
R-2O2	2.554(12)	2.532(6)	2.561(12)	2.495(8)	2.572(7)	2.550(7)	
R-2O2	2.654(12)	2.747(6)	2.717(12)	2.832(8)	2.751(7)	2.757(6)	
R-O1	3.15(2)	3.103(7)	3.17(12)	3.111(10)	3.113(7)	3.144(7)	
R-2O2	3.320(12)	3.317(6)	3.357(12)	3.272(8)	3.300(7)	3.298(7)	
R-O1	3.312(14)	3.171(7)	3.26(2)	3.144(8)	3.125(8)	3.158(8)	
<r-o>₁₂</r-o>	2.755	2.755	2.758	2.758	2.758	2.759	
Ga-2O2	1.903(12)	1.958(6)	1.982(12)	1.952(9)	1.973(7)	1.958(7)	
Ga-2O2	1.986(4)	1.976(2)	1.989(5)	2.012(9)	1.981(2)	1.988(2)	
Ga-2O1	2.040(11)	2.001(6)	1.994(12)	1.979(2)	1.991(7)	2.002(7)	
<ga-o></ga-o>	1.976	1.978	1.988	1.983	1.982	1.981	

π		~	-
IIpoc	овження	таол.	2

			r			
1	2	3	4	5	6	7
R-2Ga	3.118(1)	3.1576(5)	3.151(12)	3.1891(5)	3.1836(5)	3.1738(4)
R-2Ga	3.259(2)	3.2835(8)	3.276(3)	3.314(1)	3.3044(9)	3.3019(9)
R-2Ga	3.370(2)	3.3770(8)	3.373(3)	3.379(1)	3.3816(9)	3.3784(9)
R-2Ga	3.607(1)	3.5628(5)	3.569(2)	3.5298(5)	3.5355(5)	3.5460(5)
<r-ga></r-ga>	3.338	3.345	3.342	3.350	3.351	3.353
(R-Ga) _{max} /	1 15692	1 1 2 9 2	1 12265	1 1 1 7 7 7	1 11054	1 10692
(R-Ga) _{min}	1.15085	1.1265	1.13203	1.11/2/	1.11034	1.10085
R-2R	3.758(3)	3.780(1)	3.774(4)	3.813(2)	3.801(1)	3.799(1)
R-2R	3.8763(3)	3.8803(1)	3.8767(4)	3.8850(1)	3.8841(1)	3.8844(1)
R-2R	3.949(3)	3.941(1)	3.942(4)	3.925(2)	3.934(1)	3.932(1)
<r-r></r-r>	3.861	3.867	3.864	3.872	3.873	3.874
Ga-2Ga	3.8276(1)	3.847	3.8405(1)	3.8618(1)	3.859	3.857
Ga-4Ga	3.8524(1)	3.860	3.8572(1)	3.869	3.867	3.865
<ga-ga></ga-ga>	3.844	3.856	3.852	3.862	3.864	3.867
<r-r>/</r-r>	1 00442	1 002952	1 002115	1 002590	1 002220	1.001910
<ga-ga></ga-ga>	1.00442	1.002855	1.005115	1.002389	1.002529	1.001810
01-202	2.591(15)	2.751(8)	2.737(15)	2.657(12)	2.766(10)	2.767(8)
01-202	2.792(15)	2.772(7)	2.77(2)	2.821(9)	2.788(8)	2.788(9)
O1-2O2	2.90(2)	2.791(8)	2.86(2)	2.823(11)	2.803(9)	2.814(9)
O1-2O2	2.90(2)	2.871(7)	2.88(2)	2.898(9)	2.851(8)	2.855(8)
O2-2O2	2.753(15)	2.781(9)	2.79(2)	2.756(12)	2.776(10)	2.777(9)
O2-2O2	2.83(2)	2.818(9)	2.83(2)	2.849(14)	2.830(10)	2.825(9)
<0-0>	2.794	2.797	2.811	2.801	2.802	2.804

На рис. 2, *а* показано вплив середнього іонного радіуса РЗЕ на зміну параметрів кристалічних ґраток сполук REGaO₃. Для зручності порівняння на графіку наведені параметри перовськітної псевдокомірки, які пов'язані із періодами орторомбічної елементарної комірки такими співвідношеннями: $a_p = a_0/\sqrt{2}$, $b_p = b_0/\sqrt{2}$, $c_p = c_0/2$, $V_p = a_p \cdot b_p \cdot c_p$. Як видно з рис. 2, збільшення середнього іонного радіуса РЗЕ веде до зростання значень періодів *a* і *в* та одночасного зменшення параметра *б*. При цьому об'єм елементарної комірки твердого розчину закономірно зростає згідно із правилом Вегарда. З отриманих даних, а також результатів, наведених у роботі [12], можна зробити висновок, що в системі NdGaO₃ – SmGaO₃ область існування твердого розчину обмежується вмістом 75–80 мол. % самарію, тоді як в системі PrGaO₃ – NdGaO₃ твердий розчин заміщення існує в повному концентраційному інтервалі.

Аналіз міжатомних віддалей в досліджених структурах показує, що збільшення середнього іонного радіуса РЗЕ веде до зростання середніх катіон-аніонних віддалей <R-O>, розрахованих для координаційних чисел (КЧ) 8, 9 та 10, тоді як середні віддалі <RO>₁₂ та <Ga-O>₆ практично не змінюються (рис. 2, δ). Середні катіон-катіонні віддалі <R-Ga>, <R-R> та <Ga-Ga> (рис. 2, ϵ) також зростають із збільшенням середнього іонного радіуса РЗЕ. Кристалохімічний аналіз отриманих результатів показує, що ромбічна деформація структури твердого розчину зменшується із збільшенням середнього радіуса R-катіона. Як видно з рис. 2, ϵ , співвідношення катіон-катіонних віддалей (R-R)_{max}/(R-Ga)_{min} та <R-R>/<Ga-Ga>, які можуть бути використані для оцінки ступеня ромбічної деформації перовськітної структури [21], лінійно спадають із збільшенням середнього радіуса R-катіона.

Висновки. Проведені дослідження кристалічних структур галату самарію SmGaO₃ та твердих розчинів Nd_{1-x}Pr_xGaO₃ (x = 0,25; 0,5; 0,75) та Nd_{1-x}Sm_xGaO₃ (x = 0,25; 0,5) показали, що досліджені кристали мають ромбічно-деформовану перовськітну структуру типу GdFeO₃ (просторова група *Pbnm*, Z = 4). Ізовалентне заміщення в ряду Sm – Nd – Pr веде до зростання середнього радіуса RE-катіонів і в результаті до закономірного зростання об'єму елементарної комірки та зменшення деформації перовськітної структури.

Неперервний твердий розчин заміщення існує в псевдобінарній системі PrGaO₃ – NdGaO₃, тоді як в системі NdGaO₃ – SmGaO₃ область існування твердого розчину обмежується вмістом самарію 75–80 мол. %.

Робота виконана в рамках проекту 2M/1856-97 Міністерства освіти та науки України та при підтримці Польського Комітету Наукових Досліджень (Grant N 7 T08A 00520). Н. Редько вдячна за підтримку DAAD (Leonhard-Euler program).

1. Berkowski M., Fink-Finowicki J., Piekarczyk W., Perhuc L., Mazur K., Sass J., Vasylechko L., Savytskii D. // Proc. SPIE. – 1999. – **3724**. – C. 2–9.

2. Berkowski M., Fink-Finowicki J., Piekarczyk W., Perhuc L., Byzhevski P., Vasylechko L., Savytskii D., Mazur K., Sass J., Kowalska E., Kapusniak J. // J. Cryst. Growth. – 2000. – 209. – C. 75–80.

3. Sandstrom R.L., Giess E.A., Gallaher W.J., Segmuller A., Cooper E.I., Chisholm M.F., Gupta A., Shinde S., Laibowitz R.B. // Appl. Phys. Lett. – 1988. – 53. – C. 1874.

4. Kebin L., Zhenzhong Q., Xsjun L., Jingsheng Z., Yuheng Z. // Thin Solid Films. – 1997. – **304**(1–2). – C. 386.

5. Okazaki H., Arakawa A., Asahi T., Oda O., Aiki K. // Solid-State Electron. – 1997. – **41**(2). – C. 263.

6. Huang P., Petric A. // J. Electrochem. Soc. – 1996. – 143(5). – C. 1644–1648.

7. Vasylechko L., Matkovski A., Suchocki A., Savytskii D., Syvorotka I. // J. Alloys Compd. – 2000. – 303–304. – C. 454–464.

8. Vasylechko L., Berkowski M., Matkovski A., Piekarczyk W., Savytskii D. // J. Alloys Compd. – 2000. – 300–301. – C. 471–474.

9. Berkowski M., Fink-Finowicki J., Byzhevski P., Diduszko R., Kowalska E., Aleksiyko R., Piekarczyk W., Vasylechko L., Savytskii D., Perhuc L., Kapusniak J. // J. Cryst. Growth. – 2001. – 222. – C. 194–201.

10. Vasylechko L., Niewa R., Borrmann H., Knapp M., Savytskii D., Matkovski A., Berkowski M., Bismayer U., Berkowski M. // Solid State Ionics. – 2001. – 143. – C. 219–227.

11. Василечко Л.О., Редько Н.А., Савицький Д.І., Фадєєв С.В. // Вісн. ДУ "Львівська політехніка". – 2000. – № 401. – С. 57–62.

12. Aleksiyko R., Berkowski M., Byzhevski P., Dabrowski B., Diduszko R., Fink-Finowicki J., Vasylechko L. // Cryst. Res. Technol. – 2001. – **36**. (8–10). – C. 789–800.

13. Akselrud L.G., Gryn Yu.N., Zavalij P.Yu., Pecharsky V.K., Fundamentsky V.K. // Collected Abstracts of the 12th Eur. Crystallogr. Meetiting. – Moscow, Russia. June 1989. – C. 155.

14. Vasylechko L., Akselrud L., Morgenroth W., Bismayer U., Matkovskii A., Savyskii D. // J. Alloys Compd. – 2000. – 297. – C. 46–52.

15. Schneider S.J., Roth R.S., Waring J.L. // J. Res. Nat. Bur. Stand. – A. Physics and Chemistry. – 1961. – **65A**.(4). – C. 345–374.

16. Nicolas J., Coutures J., Coutures J.P., Boudot B. // J. Sol. St. Chem. – 1984. – 52. – C. 101–113.

17. Marezio A., Remeika J.P., Dernier P.D. // Inorg. Chem. – 1968. – 7. – C. 1337.

18. Geller S., Curlander P.J., Ruse G.F. // Mater. Res. Bull. – 1974. – 9. – C. 637–644.

19. Yamane H., Ogawara K., Omori M., Hirai T. // J. Am. Ceram. Soc. – 1995. – 78(91). – C. 2385–2390.

20. Shannon R.D. // Acta Crystallogr. - 1976. - A 32. - C. 751-767.

21. Vasylechko L., Matkovski A., Savytskii D., Suchocki A., Wallrafen F. // J. Alloys Compd. – 1999. – 291. – C. 57–65.

УДК 539.216.2

А.П. Ковальський

Національний університет "Львівська політехніка", кафедра напівпровідникової електроніки Науково-виробниче підприємство "Карат"

ВПЛИВ ВИСОКОЕНЕРГЕТИЧНОГО **у-ВИПРОМІНЮВАННЯ** НА ОПТИЧНІ ВЛАСТИВОСТІ ХАЛЬКОГЕНІДНИХ СТЕКОЛ СИСТЕМИ As–Sb–S

© Ковальський А.П., 2002

A.P. Kovalskiy

INFLUENCE OF HIGH-ENERGETIC γ-RADIATION ON OPTICAL PROPERTIES OF CHALCOGENIDE GLASSES OF As-Sb-S SYSTEM

© Kovalskiy A.P., 2002

Досліджено вплив високоенергетичного γ -випромінювання на спектри оптичного пропускання халькогенідних склоподібних напівпровідників системи As–Sb–S по псевдобінарному розрізу (As₂S₃)_x(Sb₂S₃)_{1-x}. Встановлено, що у всьому досліджуваному концентраційному діапазоні радіаційна обробка приводить до потемніння стекол в області краю поглинання та його просвітління в області прозорості. Зроблено висновок, що величина та характер спостережуваних змін оптичних властивостей визначаються співвідношенням концентрацій атомів As та Sb. Запропоновано механізм радіаційно-індукованого дефектоутворення.

Influence of high-energetic γ -radiation on the optical transmittance spectra of chalcogenide vitreous semiconductors of As-Sb-S system along of $(As_2S_3)_x(Sb_2S_3)_{1-x}$ pseudobinary line was investigated. It was established that radiation treatment leads to the darkening of glasses near the optical absorption edge and their bleaching in the transmittance region for the whole investigated concentration range. It was concluded