

ECONTECHMOD. AN INTERNATIONAL QUARTERLY JOURNAL – 2017. Vol. 6. No. 2. 15–20

Building computer vision systems using machine learning algorithms

N. Boyko, N. Sokil

Lviv Polytechnic National University, Lviv, Ukraine; e-mail: nataliya.i.boyko@lpnu.ua

Received March 1.2017: accepted June 2.2017

Abstract. In this paper theoretic aspects of machine

learning system in the field of computer vision is considered.
There are presented methods of behavior analysis. There are
offered tasks and problems associated with building systems
using machine learning algorithm. The paper provides signs of
problems that can be solved by using machine learning
algorithms There is demonstrated step by step construction of
computer vision system. The paper provides the algorithm of
solving the problem of binary (two classes) classification for
demonstration the machine learning algorithm possibilities in
image recognition field, which can recognize the gender of the
person on the photo. Aspects related to the search of data
processing are also considered. There is analyzed the search of
optimal parameters for algorithms. An interpretation of results in
machine learning algorithm is provided. Binarization methods in
machine learning algorithm are offered. There is analyzed the
technology for improving the accuracy of machine learning
algorithm. There are proposed ways to improve computer vision
system in neural systems. Also there are analyzed large software
modules that work using machine learning systems. The article
provides prospects of powerful information technologies, which
are necessary for the proper data selection in learning and
configuration of feature extraction algorithm to create a
computer vision system.

Key words: algorithm, information system, neural network,
machine learning, client-server architecture, script, artificial
system, machine learning algorithm.

INTRODUCTION

Behavioral analysis techniques require significant
computing resources. To solve this kind of problem
statistical methods are used. However, that requires large
signature base, which should be constantly updated. To
get rid of these disadvantages the machine learning
method is applied [1, 5, 20].

Machine learning is the subfield of computer science
that gives computers the ability to learn without being
explicitly programmed. Evolved from the study of pattern
recognition and computational learning theory in artificial
intelligence, machine learning explores the study and
construction of algorithms that can learn from and make
predictions on data – such algorithms overcome following
strictly static program instructions by making data driven
predictions or decisions, through building a model from
sample inputs [6, 8, 15].

This method is a generalized name of artificial
generation of knowledge from experience. Artificial
system learns from examples and with the end of the
learning phase it can make decisions on its own. It
compares the incoming information flow with known data
in statistical algorithms and detect certain regularities in
the learning data [3]. All this is done with the help of
computer vision – theory and technology of creating
machines that can perform detection, tracking and
classification of objects [9].

The main purpose of this work is to study the
methods and problems of creating computer vision
systems that affected the relevance of the topic and
review the key points in practice.

RELEVANCE AND CLASSIFICATION
OF MACHINE LEARNING ALGORITHMS

Nowadays artificial intelligence systems are
extremely promising subfield of computer science.
Machine learning algorithms have proved to be one of the
most effective in developing such systems. Their usage
area is exceptionally wide. These systems are being used
for pattern recognition in different automated systems, for
example unmanned transport, faces recognition in video
surveillance and social networks, complex system for
processing other graphical data, optimization problems of
client-server architecture and much more. In total such
systems present a whole new level of automation, both in
everyday life and in the area of complex scientific
problems [7, 10, 18].

Typical problems solved with machine learning:
• classification (using supervised learning) –

formal problem, defining a set of objects (situations),
divided into separate classes;

• clustering (unsupervised learning) – a set of
inputs is to be divided into groups, that are, unlike in
classification, are not known beforehand;

• regression analysis – a statistical process for
estimating the relationships among variables;

• data dimensionality reduction;
• others.

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua

N. BOYKO , N. SOKIL 16

In this work machine learning is being researched as
a basis for computer vision systems along with the task
and problems that may arise during the developing of
such systems.

PRACTICAL RESEARCH

To demonstrate the power of machine learning in the
area of image recognition in this research we are going to
develop a small system that will be able to determine a
person’s gender based on a photo. This means that we are
dealing with a binary (two-class) classification problem.

As a development instrument we will be using
Python programming language, which provides an ability
to work with different algorithms on a rather high level
and is in fact one of the best choices for programming
machine learning systems [2, 12, 14].

Before starting to deal with machine learning it is
crucial to collect enough data to be used as an input for a
classifier. There were 1000 pictures collected totally, half
of which depict women and the other half – men.

Let’s collect the paths to images:
visor.py:

M_PATH = 'D:\\gen_visor\\images\\men\\'
W_PATH = 'D:\\gen_visor\\images\\women\\'
TEST_PATH =
'D:\\gen_visor\\images\\unlabeled\\'

Now our goal is to mark all the images (assign them
to different classes). All the images that represent males
will be marked as 0, females – 1.

visor.py:
males = [M_PATH + f for f in
os.listdir(M_PATH)]
m_labels = [0 for m in males]

females = [W_PATH + f for f in
os.listdir(W_PATH)]
f_labels = [1 for f in females]

Same procedure has to be executed on our test data.
Later we would presume this data is sorted, so we are
going to make sure of that with a simple function called
get_pic_index(file).

visor.py:
import src.util as util
test = sorted([TEST_PATH + f for f in
os.listdir(TEST_PATH)],
key=lambda p: util.get_pic_index(p))
images = males + females
labels = m_labels + f_labels
test_labels = [1 if util.get_pic_index(x) < 113
else 0 for x in test]
util.py:
import ntpath
import os
def get_pic_index(path):
 return
int(ntpath.basename(os.path.splitext(path)[0]))

Now we import the numpy library and transform our
data into an array provided by this library. Numpy
significantly extends Python’s features of processing
collections and is a de-facto standart library when dealing
with large data sets.

visor.py:
import numpy as np

labels = np.array(labels)

Now the images have to be transformed to ensure

effective classification. All the code that deals with this
task resides in another file called transform.py. The
convert function is a façade for working with this file.

transform.py:
def convert(img_array):
 result = []
 for image in img_array:
 img = img_to_matrix(image)
 result.append(img)
 return np.array(result)

First of all we need to convert an image file into a
matrix of its pixels. To achieve this we are using
mahotas – a library developed for image processing.

transform.py:
import mahotas as mh
def img_to_matrix(filename):
image = mh.imread(filename)

Now we are going to use an interesting technique.
Since it is safe to guess that a person’s face is situated in
the center of an image, we should make the algorithm’s
work easier and make sure that is the area where it will be
looking for data. To achieve this we will blur the edges of
the picture placing its center in focus. To blur the image
we are applying Gaussian filter to each of the image’s
channels (red, green and blue).

Gaussian blur (also known as Gaussian smoothing)
is the result of blurring an image by a Gaussian function.
It is a widely used effect in graphics software, typically to
reduce image noise and reduce detail [1, 13, 18].

transform.py:
 def center_img(image):
 r, g, b = image.transpose(2, 0, 1)
 r12 = mh.gaussian_filter(r, 12.)
 g12 = mh.gaussian_filter(g, 12.)
 b12 = mh.gaussian_filter(b, 12.)
 im12 = mh.as_rgb(r12, g12, b12)
 h, w = r.shape
 Y, X = np.mgrid[:h, :w]
 Y = Y - h/2
 Y = Y / Y.max()
 X = X - w/2
 X = X / X.max()
 C = np.exp(-2.*(X**2 + Y**2))
 C = C - C.min()
 C = C / C.ptp()
 C = C[:, :, None]
 return mh.stretch(image*C + (1 - C)*im12)

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua

BUILDING COMPUTER VISION SYSTEMS USING MACHINE LEARNING ALGORITHMS 17

Fig. 1. Process of centering

The information about colors is unnecessary in this
case, so it is safe to remove it and use black-and-white
images. Additional we can blur the whole image. From a
point of view of a human that is a strange idea, because it
is definitely harder for our eyes to see the content of a
blurred image. Nevertheless blurring should remove a lot
of noises and it would improve the results of image
binarization.

transform.py:
def img_to_matrix(filename):

 image = mh.imread(filename)
 image = center_img(image)
 image = mh.colors.rgb2gray(image,

dtype=np.uint8)
 image = mh.gaussian_filter(image, 4)

Fig. 2. Colors removed and additional filter applied

A binary image is a digital image that has only two

possible values for each pixel. Typically, the two colors
used for a binary image are black and white, though any
two colors can be used. The color used for the object(s) in
the image is the foreground color while the rest of the
image is the background color.

BINARIZATION TECHNIQUES IN MACHINE
LEARNING ALGORITHM

Otsu's method is used to automatically perform
clustering-based image thresholding, or, the reduction of a
gray-level image to a binary image. The algorithm
assumes that the image contains two classes of pixels
following bi-modal histogram (foreground pixels and

background pixels), it then calculates the optimum
threshold separating the two classes so that their
combined spread (intra-class variance) is minimal, or
equivalently (because the sum of pairwise squared
distances is constant), so that their inter-class variance is
maximal [8–12].

Let’s compute Otsu’s threshold and save the binary
image.

transform.py:

thresh = mh.thresholding.otsu(image.astype(np.uint16))
 otsu_img = image > thresh
 mh.imsave('remove.jpg',

255*otsu_img.astype(np.uint8))

Now we will open this temporary image with PIL
library and resize it to match a defined common size. We
are using size STANDARD_SIZE = (170, 300).
Naturally, the images that have significantly different
aspect ratio will get malformed. That is why in machine
learning it is crucial to spend some time and effort on
input data pre-processing and preparation. Ideally we
should have a set of images where all of them are of the
same size or we would have to use a more complex
algorithms to convert them to this size without the risk of
loosing large amounts of information.

Fig. 3. Image binarization

transform.py:
from PIL import Image
image = Image.open('remove.jpg')
image = image.resize(STANDARD_SIZE)
res = np.array(list(image.getdata()))
return res

Fig. 4. Final image

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua

N. BOYKO , N. SOKIL 18

Now let’s visualize our data reducing it to 2
dimensions.

util.py
from sklearn.decomposition import PCA
import matplotlib.pyplot as plt

 def plot_graph(data_array, labels):
 pca = PCA(n_components=2)
 X = pca.fit_transform(data_array)

 colors = ['red', 'green']
 tags = ['female', 'male']
 plt.figure()
 for color, tag, i in zip(colors, tags, [0, 1]):
 plt.scatter(X[labels == i, 0], X[labels == i, 1],
color=color, label=tag)

 plt.legend()
 plt.show()

Fig. 5. Visualization (600 samples)

As of this moment we have an array of marked

images, which is enough to start training a classifier with
any machine learning algorithm. However each image is
represented by an array of size (170, 300). This means
that the algorithm will have to deal with 51000 features,
which may be pretty much excessive and such
computations would require lots of resources [4, 16, 17].

Based on this we are facing a problem of
dimensionality reduction, just as it was during the
visualization step. To achieve this, we will be using
Principal Component Analysis – a method of factor
analysis in statisticsб which is applied to reduce the
dimensionality of data with minimal loss of information.

The principle of the method – for a given set of
vectors х1, х2, …, хm Rn for each k = 0,1…,n-1 there is a
need to find Lk ⊂ Rn that the sum of the squared
distances from xi to Lk will be minimal:

2

1
(,) min

m
i k

i
dist x L

=
→∑ (1)

Let us reduce our data set to 10 dimensions.
File visor.py

pca = PCA(n_components=10)
data = pca.fit_transform(data)

Now the data is ready for processing and we should

provide a classifier. For now let us use the most simple

algorithm possible – the k-nearest neighbors algorithm. It
is a non-parametric method used for classification and
regression. In both cases, the input consists of the k
closest training examples in the feature space. k-NN is a
type of instance-based learning, or lazy learning, where
the function is only approximated locally and all
computation is deferred until classification. The k-NN
algorithm is among the simplest of all machine learning
algorithms.

Both for classification and regression, it can be useful
to assign weight to the contributions of the neighbors, so
that the nearer neighbors contribute more to the average
than the more distant ones. For example, a common
weighting scheme consists in giving each neighbor a
weight of 1/d, where d is the distance to the neighbor.

File knn.py

from scipy.spatial.distance import euclidean
class MyKnn:
 def fit(self, X_train, y_train):
 self.X_train = X_train
 self.y_train = y_train

 def predict(self, X_test):
 predictions = []
 for row in X_test:
 label = self.closest(row)
 predictions.append(label)
 return predictions

 def closest(self, row):
 best_dist = euclidean(row, self.X_train[0])
 best_index = 0
 for i in range(1, len(self.X_train)):
 dist = euclidean(row, self.X_train[i])
 if dist < best_dist:
 best_dist = dist
 best_index = i
 return self.y_train[best_index]

Training the classifier:
File visor.py
knn = MyKnn()
knn = KNeighborsClassifier(n_neighbors=5)
knn.fit(data, labels)

Now we are creating an associative array (a

dictionary) with filenames from testing data set as keys
and image data as values. Using this map we are getting
the result of classification.

File visor.py

test_map = dict(zip(test, pca.fit_transform
(tf.convert(test))))
predicted = {}
for k, v in test_map.items():
 r = knn.predict(v.reshape(1, -1))
 predicted[util.get_pic_index(k)] = r

predicted_labels = []
for key in sorted(predicted):
 predicted_labels.append(predicted[key])

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua

BUILDING COMPUTER VISION SYSTEMS USING MACHINE LEARNING ALGORITHMS 19

To assess the precision of our computations we
should compare it to the manually classified values.

File visor.py

import sklearn.metrics as metrics

print(str(metrics.accuracy_score(test_labels,
predicted_labels) * 100) + '%')

Console output:
C:\Python35\python.exe D:\gen_visor\src\visor.py
59.52138261273%
This precision is pretty high for such a simple

algorithm (random classification would give us 50%), but
there is still much more to be desired.

How can we possibly improve the results? Our
classifier was using only the nearest neighbor to plot its
predictions (k = 1). Let’s make use of the provided
classifier from sklearn package that is more configurable.
We should also test the other algorithms implementations
from this library.

The class sklearn.tree.DecisionTreeClassifier is based
on the so called decision tree, that uses a tree-like graph
or model of decisions and their possible consequences,
including chance event outcomes, resource costs, and
utility. Decision trees are commonly used in operations
research and operations management. If in practice
decisions have to be taken online with no recall under
incomplete knowledge, a decision tree should be
paralleled by a probability model as a best choice model
or online selection model algorithm. Another use of
decision trees is as a descriptive means for calculating
conditional probabilities.

The class sklearn.svm.SVC is a classifier that
implements a support vector machine. In machine
learning, support vector machines (SVMs, also support
vector networks) are supervised learning models with
associated learning algorithms that analyze data used for
classification and regression analysis. Given a set of
training examples, each marked as belonging to one or the
other of two categories, an SVM training algorithm builds
a model that assigns new examples to one category or the
other, making it a non-probabilistic binary linear
classifier. An SVM model is a representation of the
examples as points in space, mapped so that the examples
of the separate categories are divided by a clear gap that is
as wide as possible. New examples are then mapped into
that same space and predicted to belong to a category
based on which side of the gap they fall.

In addition to performing linear classification, SVMs
can efficiently perform a non-linear classification using
what is called the kernel trick, implicitly mapping their
inputs into high-dimensional feature spaces. Kernel
methods owe their name to the use of kernel functions,
which enable them to operate in a high-dimensional,
implicit feature space without ever computing the
coordinates of the data in that space, but rather by simply
computing the inner products between the images of all
pairs of data in the feature space.

The resulting algorithm is formally similar, except
that every dot product is replaced by a nonlinear kernel
function. This allows the algorithm to fit the maximum-

margin hyperplane in a transformed feature space. The
transformation may be nonlinear and the transformed
space high dimensional; although the classifier is a
hyperplane in the transformed feature space, it may be
nonlinear in the original input space.

It is noteworthy that working in a higher-dimensional
feature space increases the generalization error of support
vector machines, although given enough samples the
algorithm still performs well.

The most common kernels:
• Polynomial: (,) (,)dk x x x x const′ ′= + ;
• Radial basis function:

2
(,) , 0x xk x x eγ γ′−′ = > ;

• Gaussian radial basis function:
2

22(,)
x x

k x x e σ

′−

′ = ;
• Sigmoid:

(,) tanh(,), 0, 0k x x k x x c k c′ ′= + > < .
In our case we will be using a radial basis function,

which is a set of interpolation methods. A radial basis
function (RBF) is a real-valued function whose value
depends only on the distance from the origin, so that; or
alternatively on the distance from some other point c,
called a center, so that (,) ()x c x cφ φ= − . Sums of radial
basis functions are typically used to approximate given
functions.

visor.py
from sklearn.neighbors import KNeighborsClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.svm import SVC

knn = KNeighborsClassifier(n_neighbors=5)
dtc = DecisionTreeClassifier(max_depth=4)
svc = SVC(kernel=’rbf’)
...

Console output:
C:\Python35\python.exe D:\gen_visor\src\visor.py
K nearest neighbors: 61.14035087719%
Decision tree: 62.2807017544 %
Support vector: 90.350877193%

Based on the above we can see that the

implementation of the support vector machines was the
most accurate in its classification.

Full source code can be found here:
https://github.com/nestorsokil/gen_visor

CONCLUSIONS

In this research a computer vision system was
developed and all the aspects of building such system
were examined, including collecting the data, its
preparation and transformation, finding the optimal
algorithm parameters and results interpretation.

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua

N. BOYKO , N. SOKIL 20

The main purpose was to investigate the methods and
problems that occur during the development and to
explore the topicality of this issue in the modern world.

There are many ways to improve the developed
system. First of all it is the more thorough collection of
input data (ideally one should have a significant amount
of high resolution images to develop and make use of
such system). Obviously, this would require a lot more
resources both computational and temporal. It is for this
reason that large program modules that are based on
machine learning algorithms are executed on powerful
computers with high-end graphics processors to be able to
process big sets of image data on high speed. These costs
are really necessary when the accuracy is important,
because the correct data and configuring the algorithm to
improve feature extraction is key to success when
building computer vision system.

REFERENCES

1. Boyko N. 2016 Basic concepts of dynamic recurrent
neural networks development / N. Boyko,
P. Pobereyko // ECONTECHMOD : an international
quarterly journal on economics of technology and
modelling processes, Lublin: Polish Academy of
Sciences, Vol. 5, No. 2, pp. 63–68.

2. Coelho L. 2013 Building Machine Learning Systems
with Python / Luis Pedro Coelho, Willi Richert,
Birmingham – Mumbai: Published by Packt
Publishing Ltd., 290 p.

3. Bishop C. M. 2006 Pattern recognition and machine
learning / Christopher M. Bishop, Springer
Science+Business Media, LLC, 78 p.

4. .Lytvyn V. 2012 Method of automation building and
evaluation of data knowledge quality. / V. V. Lytvyn,
M. J. Hopyak, A. B. Demchuk // Automation system.
Harkiv : XNYRE, No. 161, pp. 62–69 (in Ukrainian).

5. Demchuk A. B. 2011 The method of ontological
agent building on subject area A. B. Demchuk,
V. V. Lytvyn, M. N. Voychyshen // Informational
systems and networks. Lviv: Lviv Polytechnic Publi-
shing House, No. 715, pp. 215–225 (in Ukrainian).

6. Palagin A. V. 2006 The architecture of ontological
computer systems / A. V. Palagin// Cybernetics and
system analysis. – Moscow: Cybernetics and system
analysis, No. 2, pp. 111–125 (in Russian).

7. Nivikov P. S. 1973 Basis in logic, 2 edition/
P. S. Novikov, Moscow : Nauka, 400 p. (In Russian).

8. Gilbert D. 1947 The basis of theoretical logic / D.Gil-
bert, V. Akkeman. Moskva: GIIL, 302 p. (in Russian).

9. Elkan C. 2003 Using the triangle inequality to
accelebrate k-means / C. Elkan // In Proceedings of
the Twelfth International Conference on Machine
Learning, pp. 147–153.

10. Demchuk A. B. 2014 Videocontent for the blind: the
method tyflokomentuvannya / A. B. Demchuk //

Radioelektronika, informatyka, upravlinnya, No. 1 (30),
pp. 146–149 (in Ukrainian)

11. Matov O. Ia. 2009 Modern technologies of
information resources integration / O. Ia. Matov //
Registration, storage and processing of data, Vol. 11,
No. 1, pp. 33–42.

12. Khramova I. O. 2009 The use of service-oriented
architectures in the integration of information
resources / I. O. Khramova // Registration, storage
and processing of data, Vol. 11, No. 2, pp. 70–76.

13. Matov O. Ia. 2009 Mathematical models of conflict
losses performance of the mediators ontology for
General use in GRID environment / O. Ia. Matov //
Registration, storage and processing of data, Vol. 11,
No. 3, pp. 18–25.

14. Matov O. Ia. 2007 The problem of horizontal integ-
ration of information resources in a multi-tiered or-
ganizational structures with dynamic configuration /
O. Ia. Matov // Registration, storage and processing
of data, Vol. 9, No. 3, pp. 88–97.

15. Matov O. Ia. 2006 Dynamic integration of infor-
mation resources of the unified information in-
frastructure of the electricity market / O. Ia. Matov //
The functioning and development of electricity and
gas markets: collection of scientific works Institute of
modelling in energy im. H. Ie. Pukhova, pp. 93–98.

16. Matov O. Ia. 2006 Model performance the operating
nodes of the information infrastructure of corporate
information systems in the field of electricity /
O. Ia. Matov // Information technology in power
engineering: collection of scientific works Institute of
modelling in energy im. H. Ie. Pukhova, pp. 95–105.

17. Matov O. Ia. 2006 The organization of ontologies in
common use in the integrated information infras-
tructure preparation of data for decision-making /
O. Ia. Matov // The functioning and development of
electricity and gas markets: collection of scientific
works Institute of modelling in energy im.
H. Ie. Pukhova, pp. 99–103.

18. Matov O. Ia. 2005 The problem of the use of GRID
technologies as the basis of integration of information
and analytical resources to support processes of
electronic control / O. Ia. Matov // Proceedings of the
Academy of engineering Sciences of Ukraine,
No. 2 (25), pp. 82–89.

19. Boyko N. 2016 A look trough methods of intellectual
data analysis and their applying in informational
systems / Nataliya Boyko // Computer sciences and
information technologies CSIT 2016: Proc. of XI
International scientific practical conference CSIT
2016: proceedings, Lviv: Lviv Polytechnic
Publishing House, pp. 183–185.

20. Boyko N.I. 2016 Data processing technologies in
dynamic systems / N. I. Boyko // Modern problems
of applied mathematics and informatics., Lviv: Lviv
National University named by Ivan Franko,
pp. 37–40 (in Ukrainian).

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua

