
ADVANCES IN CYBER-PHYSICAL SYSTEMS
Vol. 1, No. 2, 2016

COMPUTER DEVICES AUTOMATIC SYNTHESIS AS A SERVICE
FOR FPGA-BASED SMART-SENSORS OF CYBER-PHYSICAL SYSTEMS

Viktor Melnyk, Ivan Lopit, Andrii Kit

Lviv Polytechnic National University, 12, Bandera str., Lviv, 79013, Ukraine
Authors e-mail: viktor.a.melnyk@gmail.com

Submitted on 19.12.2016

© Melnyk V., Lopit I., Kit A., 2016

Abstract: Present paper is dedicated to the problems of
studying and developing the theoretical and methodological
framework, algorithmic base and corresponding software
means to organize and realize the automatic synthesis of
computer devices in the reconfigurable hardware platforms
of the smart-sensors in cyber-physical systems with no
human assistance. To solve this task, the following basic
approaches will be used: a) a method of self-configuring of
the computer system with reconfigurable logic; b) a “Software
as a Service” software delivery model via a computer
network; and c) an “Internet of Things” technology. The
method of computer devices automatic synthesis in the
reconfigurable hardware platforms of the smart sensors of
the cyber-physical systems will be proposed. The client-
server protocol of information exchange between the
reconfigurable hardware platforms of the cyber-physical
system measuring and computing nodes will be developed
for automatic creation of computer devices in them. On the
basis of the above protocol, the technical requirements to
realization will be formulated and the principles of design
and the main algorithms of the software interface operation
will be developed. The program interfaces of realizing the
protocol of information exchange between the reconfigurable
hardware platforms of the smart-sensors for automatic
creation of computer devices will be modeled and the results of
their implementation and testing will be demonstrated.

Index Terms: Cyber-Physical System, Field Programmable
Gate Array, FPGA-Based Smart-Sensor, Self-Configuring,
Software as a Service, Internet of Things.

І. INTRODUCTION
Оver several years, developing and studying the cyber-

physical systems (CPSs) continues to be one of the
principal scientific and technical trends of the computer,
information-communication and information-measuring
systems progress. The cyber-physical system means a
combination of physical processes and cybernetic means to
ensure organizing the measuring and computing processes,
protected storing and exchanging the measuring and service
information, making decisions and organizing and realizing
the influence on the physical processes. Combining these
components within the framework of a single system allows
the new results to be obtained capable of being used in
creating a wide range of fundamentally new scientific,
technical and service tools [1].

Due to automation of the information-measuring and
computing processes, decision making processes and

influencing the physical processes, CPSs are reasonably
considered as one of the factors of the fourth industrial
revolution. In 2012, the scientific research in the CPS
sphere was recognized as one of the key trends of those
carried out by the US National Science Foundation.

The further CPS development depends essentially on
the technological progress in computer engineering and
information-communication technologies. An important
issue here is design of the energy saving autonomous
measuring and computing nodes capable of not only the
information collecting and primary processing but also
of performing specialized computations. Equally
important is also the increase of productivity and
'intellectualization' of computational means that must be
able to analyze the huge data arrays in real time and to
make necessary decisions.

Specialization and hardware interpretation of algorithms
to be executed are the basic approaches in providing high
productivity and energy efficiency of computer means.
However, the use of the above approaches ensures high
productivity indices of computer means in the related
classes of problems only. Constructing computer means
using reconfigurable components allows the problem of the
efficient combination of the executed algorithm flexibility
and hardware interpretation to be solved. The structure and
functions of the above means might be readjusted in a
prescribed manner with the purpose to take into account
the structural and computational characteristics of the
algorithms to be executed. Practical implementation of the
reconfigurable computing technology has become possible
since the advent of the field programmable gate array
(FPGA) electronic circuits of a high integration degree.

Due to the aforementioned properties, FPGAs are
perfectly suited for use in CPSs, in particular, to realize
the measuring and computing nodes. One of such
application is, for instance, protection of information
transmitted between these nodes, since cryptographic
algorithms used in the wireless networks with
autonomous nodes, in particular, in the sensor [2] and
Wi-Fi [3] ones are complicated, and their execution
requires significant energy resources. Therefore, the
information protection subsystems in such nodes are
often realized in FPGAs. Realization of specialized
computations within the measuring and computing node

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua

Viktor Melnyk et al.

104

is the other example of FPGAs application, because this
ensures low energy consumption at acceptable productivity.

ІІ. RELATED WORK
In Ref. [1], a generalized structure of the cyber-

physical system was proposed. It includes such
components as high-performance computational means,
information collection and processing centers,
information protection and access management systems,
communication environment, and an N autonomous
measuring and computing nodes each interacting with
the physical environment via the sensor and executive
system. The measuring and computing node functions
and the order of the node interaction with the physical
environment are generally determined by the CPS
purpose, architecture and functions as well as by the
node location in it, and, if necessary could be modified.
The node-embedded system of specialized computations
and decision making is responsible for the node
operation organization.

Due to the progress in the integrated circuits (ICs)
and sensors production technologies, today the
measuring and computing nodes are realized frequently
in the integrated form. Portable devices that combine
sensor system, computational means, communication
means and a set of means for executing “intellectual”
functions, i.e. decision making, self-diagnostics, self-
testing etc., are called the smart sensors [4]. The latter
involve usually a sensor itself, a microprocessor, a
memory and an interface controller(s).

Minimal energy consumption is one of the principal
requirements to the smart sensors. This is due to the fact
that the measuring and computing nodes in CPS are
autonomous, often have no fixed power source and are
powered by the replaceable batteries. As one of
consequences, the task of realizing the energy-efficient
hardware means for specialized computations and
decision making characterized by a low power
consumption does arise.

Obviously, the use of high-performance universal
processors like Xeon, Pentium or Core i7 produced by
Intel, or Sempron, Athlon, A8 produced by AMD should
not be reasonable here. On the other hand, computing
capabilities of low-powered energy saving processors,
e.g. G-Series produced by AMD, or ARM Cortex, are not
always sufficient for many CPS applications. Therefore,
the use of FPGAs is absolutely feasible since they
contain the reconfigurable logic arrays, arithmetic
devices, multipliers and even digital signal processor
units for specialized computations, embedded memory
for data and program storage, standard interface
controllers. At the same time they are characterized by
high potential productivity and relatively low power
consumption. In addition, many modern FPGAs contain
universal programmable microprocessors that could be
used for specialized computation management and
decision making. These microprocessors could be

integrated into the FPGA chips as full custom regions or
delivered in a form of soft cores and synthesized in
FPGA together with other specialized computational
means. The full-custom microprocessors implementations
are, for example, PowerPC™ 405 in the Virtex-4 FPGA
produced by Xilinx and ARM922T™ in the Excalibur
FPGA produced by Altera. The most widely used
microprocessor soft cores are the VHDL-models of the
32-bit LEON3 processor with the SPARC V8 architecture
produced by Aeroflex Gaisler, the 32-bit embedded Nios
II processor produced by Altera with the architecture
adapted to their own FPGAs, as well as MicroBlaze, –
the 32-bit embedded RISC-processor produced by Xilinx
with the Harvard architecture adapted to their own
FPGAs.

The FPGA-based smart sensors are quite widespread
today. Of their applications, one may distinguish the
monitoring systems [5], computer vision and digital
signal processing systems [4] and metrological systems
[6]. The FPGAs in smart sensors are the reconfigurable
hardware platforms (RHPs) intended to realize the
specialized computational and decision making means.
They are used to realize the application-specific
processors for execution algorithms of, for example,
compression [7]-[9], sound processing [10], [11], image
processing [12]-[14], cryptographic transformations [15],
[16]. The areas of the smart sensors application are
analyzed in Ref. [14]. Of particular interest is using in
the smart sensors those FPGAs that support partial
reconfiguration. This enables, on the one hand, to extend
their functions, when different application-specific
processors operate in the different reconfigurable regions
of FPGA and, on the other hand, to optimize energy
consumption by adjusting the application-specific
processors in FPGA to the data processing in real time at
minimal frequency [13].

ІІІ. PROBLEM STATEMENT
A problematic issue of the FPGA-based smart

sensors use in CPSs is configuration, i.e. realization of
processors for specialized computations, interface
controllers and other components of the specialized
computing and decision making system.

The problem is, first of all, that implementing into
FPGA requires application-specific processors soft cores
designing (or getting ready-made solutions from the
third parties). Designing process is described in detail in
Refs. [18], [19]. This process is rather laborious and
requires significant financial and time costs because it
involves architectural designing of the application-
specific processors, soft cores development and
debugging using the hardware description language, and
their logic synthesis in the target FPGA. As a result of
the logic synthesis, the FPGA configuration code is
obtained. Note that it is necessary first to define and
develop the algorithms to be executed by the specialized
computing and decision making system.

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua

Computer Devices Automatic Synthesis as a Service for FPGA-Based Smart-Sensors of Cyber-Physical…

105

Second, after the application-specific processor
designing, a problem arises of how to load the configuration
code into the reconfigurable hardware platform of the smart
sensor. To do this it is necessary to connect the above
sensor to computer with the relevant software being
installed and to execute the configuration procedure. Taking
into account the scale of the CPS that may involve hundreds
or thousands geographically distant measuring and
computing nodes, one may realize how this process is
longstanding and complicated. Moreover, changing
functions or even adjusting operating parameters of the
measuring and computing node may require FPGA
reconfiguration, and this makes CPS rigid, inert and hardly
suitable for modernization or reprofiling.

Therefore, the important task is developing the
theoretical and methodological framework, algorithmic
base and corresponding software means to organize and
execute the automatic synthesis of computer devices in
the reconfigurable hardware platforms of the smart
sensors (and other types of measuring and computing
nodes) of CPSs with no human assistance. In our
opinion, to solve this task, the basic are applications of
following methodological and technological approaches:
a) a method of self-configuring of the computer system
with reconfigurable logic; b) a “Software as a Service”
(SaaS) software delivery model via a computer network;
and c) an “Internet of Things” (IoT) technology. The use
of the first approach allows the process of developing the
application-specific processors soft cores to be
synthesized in the reconfigurable hardware platforms of
the smart sensors to be automated. The second approach
enables this process to be realized as the service for the
CPS smart sensors. Third approach aims at ensuring
initiating the RHP configuration creation and its transfer
to the smart sensor with no human assistance. Solving
this task is a subject of research presented in this paper.

IV. STRUCTURE OF THE ARTICLE
The material of the present paper is structured as

follows.
Section V reviews the basic methodological and

technological approaches to the solution of the problems
of the FPGA-based smart sensors application in the
CPSs, namely, the method of self-configuring of the
computer system with reconfigurable logic, the SaaS
model and the IoT technology.

The method of computer device automatic synthesis
in the reconfigurable hardware platforms of the CPS
smart sensors is proposed in Section VI, making a basis
for the development of the relevant algorithmic base and
software means.

Section VII is devoted to the development of the
client-server information exchange protocol with the
reconfigurable hardware platforms of the CPS smart
sensors for automatic creation of computer devices in
them. The types of messages of client-to-server
exchange and their transfer environment are reviewed;

the operating algorithms and the relevant server’s and
client’s finite state machines are developed. The example
of a client-to-server communication is given.

In order to provide communication according to the
above protocol, the data packet format is developed in
Section VIII.

In Section IX, the requirements to the program
interface that realizes the developed protocol of
information exchange between the reconfigurable
hardware platforms of the CPS smart-sensors for
automatic creation of computer devices in them are
determined, the software means of realizing this protocol
are modeled and the results of their implementation and
testing are demonstrated.

V. REVIEW OF BASIC APPROACHES TO SOLVING
THE PROBLEMS OF THE FPGA-BASED SMART

SENSORS APPLICATION IN CPSS

A. Method of Self-Configuring of the Computer System
with Reconfigurable Logic

The self-configurable computer system (SCCS) is the
computer system with reconfigurable logic where the
program compilation includes automatically performed
actions of creation of configuration, and which acquires
that configuration automatically in the time of program
loading for execution [18], [20], [21].

The SCCS automatically executes: 1) computational
load balancing between the general-purpose processor
and reconfigurable environment (RCE); and 2) creation
of an application-specific processor (ASP) HDL-model.
Loading of the configuration files obtained after logical
synthesis into the RCE is carried out by the operating
system in parallel with loading of the general-purpose
processor’s subprogram executable file into the main
memory after program initialization [18], [20], [21].

The method of information processing in the SCCS
consists of three stages: compiling the program, its loading,
and execution. This method supposes following. The user
creates a program written in a high-level programming
language and submits it into the SCCS. During compiling
the SCCS automatically performs the following actions:
divides this program into the general-purpose processor’s
subprogram and RCE’s subprogram, performs general-
purpose processor’s subprogram compilation and generates
its executable file, creates ASP’s HDL-model to perform
RCE’s subprogram, performs ASP’s logic synthesis, and
stores obtained executable and configuration files into the
secondary storage.

At the stage of the program loading after its
initialization, the SCCS loads the executable file of the
general-purpose processor’s subprogram into the main
memory using a conventional loader and, at the same
time, loads the configuration files into the RCE and thus
creates an ASP in there using the FPGA configuring
tools. Then, the stage of the program execution is
performed.

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua

Viktor Melnyk et al.

106

The use of the method of self-configuring in the FPGA-
based smart sensors allows one to generate automatically
the computer devices soft cores to be synthesized in their
RHPs, to obtain their configurations and, thus, to solve the
problem of developing the application-specific processors,
interface controllers and other components of the
specialized computing and decision making system. At the
same time, the complexity of the method of self-
configuring and the need in the high-performance computer
means for its execution give no possibility to realize it
inside the smart sensor with its limited energy and
computational resources.

B. “Software as a Service” Software Delivery Model
Software as a service (SaaS) is a service delivery

model in which software is centrally hosted and is
accessible for clients [22], [23]. SaaS has become a
common delivery model for many business applications,
including software for office and messaging, database
management, computer-aided design, gaming, antivirus
protection and more [24].

The vast majority of SaaS solutions are based on a
multi-tenant architecture. With this model, a single
version of the application, with a single configuration
(hardware, network, operating system), is used for all
customers (“tenants”). To support scalability, the
application is installed on multiple machines. This is
contrasted with traditional software, where multiple
physical copies of the software – each potentially of
a different version, with a potentially different
configuration, and often customized – are installed
across various customer machines.

The use of the SaaS model in the CPS allows one to
organize via the network the provision to the smart
sensors of the software tools necessary for the automatic
generation of the computer device soft cores to be
synthesized in their FPGAs and to obtain their
configurations. Obviously, these software tools must be
installed at the special server in the CPS.

C. “Internet of Things” Technology
The Internet of things (IoT) is the information

communication technology allowing the interaction of
physical devices, vehicles, buildings, and other items –
equipped with embedded electronic hardware, software,
sensors, actuators, and network connectivity that enable
these objects to collect and exchange data [25], [26]. The
IoT technology allows objects to be sensed and/or
controlled remotely across existing network infrastructure,
creating opportunities for direct integration of the
physical world into computer-based systems, and
resulting in improved efficiency, accuracy and economic
benefit. The IoT is one of the basic technologies used in
the more general class of cyber-physical systems. Each
thing is uniquely identifiable through its embedded
computing system but is able to interoperate within the
existing Internet infrastructure.

“Things”, in the IoT sense, can refer to a wide variety of
devices. Typically, IoT is expected to offer advanced
connectivity of devices, systems, and services that goes
beyond machine-to-machine (M2M) communications and
covers a variety of protocols, domains, and applications.

We suggest using the CPS smart sensors as the
“things” interacting via the IoT with the goal to automate
the configurations creation requests and receipt. This
will enable the configuration codes to be loaded
automatically into the smart sensor’s RHP in case of a
need in the change of operating algorithms of the
specialized computing and decision making system and
will solve a problem of the CPS rigidity and inertia
during its reprofiling or modernization.

The benefits that may be gained due to the use of the
above basic approaches in the CPSs with the FPGA-
based smart sensors are generalized in Fig. 1 in a form of
a “Self-Configurability-SaaS-IoT'” triangle. Combining
these benefits forms an approved theoretical basis for the
development of the method of computer devices
automatic synthesis in the RHPs of the CPS smart
sensors, which is presented below.

Fig. 1. “Self-Configurability-SaaS-IoT” triangle

VI. METHOD OF COMPUTER DEVICES AUTOMATIC
SYNTHESIS IN THE RECONFIGURABLE
HARDWARE PLATFORMS OF THE CPS

SMART SENSORS
As stated above, today the measuring and computing

nodes are being realized mainly as the integrated devices
called the smart sensors. Therefore, when describing this
method below, we shall use just this term, not limiting,
however, its applications to the other types of the
measuring and computing nodes.

To realize the computer device automatic synthesis in
the reconfigurable hardware platforms of the smart

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua

Computer Devices Automatic Synthesis as a Service for FPGA-Based Smart-Sensors of Cyber-Physical…

107

sensors, one has to introduce into the CPS structure [1]
additionally the following components:

– a library to store the high-level descriptions of the
operating algorithms of the specialized computing means.
Such library could be both global, i.e. accessible for many
smart sensors, and local one. The high-level descriptions are
presented in a form of the computer programs written in the
programming language, for instance C. They may be put
into the library during the CPS creation or later, during its
reprofiling or modernization;

– a complex of software tools for automatic generation
of smart sensors configurations (hereinafter referred to as
the configurations generation system). This system may be
involved in the CPS high-performance computational
means or be its separate component connected to the smart
sensors via the communication environment.

Fig. 2 illustrates the method of computer devices
automatic synthesis in the RHPs of the CPS smart
sensors. The essence of this method lies in that:

– the smart sensor receives from the library the HLLP
program that describes the operation algorithm of the
specialized computing means in it and transfers this
programs together with the universal microprocessor
(MPC) and RHP (RHPC) characteristics to the
configurations generation system;

the configurations generation system, having
received the above program and characteristics, shall
automatically execute the following actions:

– extracts from the HLLP program most computationally
complex fragments and distributes it onto the MPP
subprogram of the universal microprocessor and the RHP
subprogram RHPP constructed from the extracted fragments;

– compiles the MPP subprogram of the universal
microprocessor into the executable file obj that corresponds
to its architecture and the RHP subprogram to the configu-
ration file conf that corresponds to its characteristics. In this
case the RHP subprogram compilation into the configuration
file consists in the automatic creation of the application-
specific processor soft core from this subprogram with
further logic synthesis execution;

– transfers the universal microprocessor executable
file created and the RHP configuration file to the smart
sensor;

– the smart sensor receives the above files, stores the
executable file into the memory and loads the
configuration into the RHP.

In the method described, the smart sensor is a client,
whereas the configurations generation system is a server.

Fig. 2. Method of computer devices automatic synthesis in the RHPs of the CPS smart sensors

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua

Viktor Melnyk et al.

108

To carry out the above actions, one has to introduce
into the configurations generation system the following
software tools:

1. Tools for computational load distribution between
the universal processor and RPH. These tools find
automatically in the HLLP programs those fragments that
constitute the computational load and provide at the
execution in RPH the advantage in the smart sensor
energy consumption, and distribute the HLLP program
onto the MPP subprogram of the universal microprocessor
replacing in it the extracted fragments by the RPH
instructions, and the RPH subprogram RHPP formed of
the above fragments. One of the examples of such
system realization is given in Ref. [27].

2. Compiler(s) for the MPP subprograms compilation
from the input language, they are written in, into the
object codes obj that may be directly executed by the
universal microprocessor of the smart sensor.

3. Computer device soft cores generation tools that
generate automatically the application-specific processors
soft cores from the RHPP subprograms, for example,
Chameleon produced by Intron [28], [29], Agility Compiler
[30] and DK4 Design Suite [31] produced by Celoxica,
CoDeveloper produced by Impulse [32].

4. Logic synthesis tools for application-specific
processors soft cores synthesis in target FPGAs. These tools
are available from the FPGA vendors, e.g. Vivado Design
Suite, ISE, Alliance, Foundation produced by Xilinx [33];
Quartus II, Max + II produced by Altera [34].

As mentioned above, the smart sensor transmits to the
configurations generation system the universal micropro-
cessor and RPH characteristics together with the HLLP
program. Let’s consider the purpose of these characteristics.

The universal microprocessor architecture is its
characteristic that makes a basis for selecting the
compiler from the input language to the object code.

The following RHP characteristics are classified as the
basic ones: the FPGA type and series, the package type
and the number of pins. The secondary characteristics are
as follows: the embedded memory units amount and
organization, the arithmetic and logic devices amount and
organization, the basic logic elements and the input/output
blocks amount, the maximal operating clock frequency
and the energy consumption. The basic RPH characte-
ristics are the input information for the logic synthesis
tools. The secondary RHP characteristics are necessary for
the computer device soft cores generation tools to
determine the application-specific processors parameters,
in particular, the number of the parallel computational
units, the maximal command memory size, the interface
capacity etc.

Thus, the task of the RHP configurations automatic
creation and receipt in the measuring and computing
nodes with no human assistance is solved in CPS.

Having the above software tools in hand, it is
necessary to develop the protocol of information
exchange in CPS between the configurations generation
system and the smart sensors for automatic synthesizing
the computer devices in their RHPs, as well as the data
packet format for this information transfer. We shall
examine these problems below.

VII. PROTOCOL OF INFORMATION EXCHANGE
IN CPS BETWEEN THE CONFIGURATIONS

GENERATION SYSTEM AND SMART SENSORS
FOR COMPUTER DEVICES AUTOMATIC

SYNTHESIS IN RHP
A. Messages and Their Communication Environment

Communication between the server, i.e. the
configurations generation system, and the client, i.e. the
smart sensor, is realized in a way of transferring
messages. The communication environment must ensure
the transfer possibility, while the transfer protocol must
warrant the message delivery, as, for instance, TCP [35]
or other data transfer protocols with guaranteed delivery
in the OSI model [36].

The messages in the protocol could be divided into
2 groups:

A group of messages for connection state
management. This group includes those messages that
are responsible for connection establishment, authoriza-
tion, its passing, control and completion.

A group of messages for the data transfer. This group
includes those messages that contain information on the

HLLP programs, characteristics of the microprocessor and
RHP and the RHP configuration itself.

B. Server’s Finite State Machine
Consider first a server’s finite state machine

responsible for connection state management from the
server’s side (Fig. 3). The state machine operates
according to the following algorithm.

The initial state of the state machine, which the server
starts its operation from, is Init. After calling start(), the
server transits into the WaitForConnection state, where it
waits for a client connection.

If the connection is successful, the DoAcceptConnection()
method is called, and the server transits into the Connected
state.

If the connection error occurs or the number of
connection attempts is exceeded, the server transits
into the ConnectionFailed state by means of the
OnMaxConnectionAttempt() and OnConnectionFailed()
methods, respectively.

If the number of connection attempts is not exceeded, the
transition into the WaitForConnection state occurs by
means of the WaitForNewConnection() method. Otherwise,
the transition into the Error state will take place by means
of the HandleConnectionFailed() method that is responsible
for irreversible connection error.

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua

Computer Devices Automatic Synthesis as a Service for FPGA-Based Smart-Sensors of Cyber-Physical…

109

Fig. 3. Server’s finite state machine

At the successful connection, the server will transit to

the WaitForAuthorization state, i.e. into the machine state,
in which the server waits for the client authorization.

If the client is authorized, the server transits into the
Authorized state by means of DoAuthorizationAccept().
In case of the authorization error, the
OnAuthorizationFailed() method is called and the server
transits into the AuthorizationFailed state.

If the number of authorization attempts is not
exceeded, the server may return from the
AuthorizationFailed state into the WaitForAuthorization
state by calling the WaitForNewAuthorizationAttempt()
method. Otherwise, the HandleAuthorizationFailed()
method will be executed and the server will transit into
the Error state.

If the limit of the server stay in the WaitForAuthorization
state is exceeded, the OnAuthorizationTimeout()
method is called and the server transits into the
AuthorizationFailed() state.

In case of a successful authorization, the server will
transit into the WaitForJobRequest state. In this state, the
server waits for the request for the RHP configuration
generation execution. If the limit of the server stay in
the WaitForJobRequest state is exceeded, the
OnJobRequestTimeOut() method will be called and the
transition into the JobFailed state will occur. In case the
bad synthesis parameters were transmitted, the transition
to the JobFailed state will occur by means of
OnBadParameters(). The transition from the JobFailed
state into the WaitForJobRequest one is possible by
means of WaitForNewJobRequest(), provided the
number of execution requests is not exceeded, otherwise
the transition to the Error state occurs and connection
will be finished. If OnJobRequestReceived() is received
successfully, the server will transit into the WorkOnJob
state, where configurations for RPH are generated.
Errors may occur during execution, and in this case the
server will transit from the WorkOnJob state into the

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua

Viktor Melnyk et al.

110

JobFailed one. As a result of successful synthesis, the
OnJobCompleted() method will be executed successfully,
and the server will transit into the WaitForAcknowledge
state, where it will wait for the client’s response that
acknowledges the configuration receipt. In case this does
not occur, the server will transit into the Error state by
means of the OnAcknowledgeTimeout() method. If the
acknowledgement is received, OnAcknowledgeReceived()
is called. The server will transit into the Disconnected() state,
where connection terminates. After the connection
termination, the state is reset by the DoCleanUp() method
and the server transits into the Init state. In case of the
irreversible error, the server will stay in the Error state. The
transition from this state into the Disconnected one will occur
by means of the DoUngracefulDisconnection() method.

C. Client’s Finite State Machine
This finite state machine is responsible for the

connection management from the client’s side (Fig. 4).

The client’s finite state machine operates according
to the following algorithm. The client starts operating
from the Init state. Connection with the server is
executed by means of the DoConnect() method and the
client transits into the Connecting state waiting for the
server response. If the response waiting time is
exceeded, the OnConnectionTimeOut() method is called,
and the client transits to the ConnectionFailed state. In
the case when the server fails to accept connection, the
OnHostRejects() method will be called, and the client
will transit into the ConnectionFailed state.

The transition from the ConnectionFailed state to the
Connecting state is possible by means of the
DoConnectionAttempt() method provided if the number of
attempts did not exceed the limit. If the connection is
successful, the client transits into the Connected state. By
calling the DoAuthorization() method, the transition is
performed from the Connected state to the Authorizing one,
in which the client waits for the authorization from the server.

Fig. 4. Client’s finite state machine

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua

Computer Devices Automatic Synthesis as a Service for FPGA-Based Smart-Sensors of Cyber-Physical…

111

If the authorization is not successful or the response
waiting time is exceeded, the transition into the
AuthorizationFailed state occurs by means of the
OnAuthorizationTimeOut() or OnBadCredentials() methods.

If the limit of attempts is not exceeded, the
DoAuthorizationAttempt() method is executed, otherwise
the transition to the Error state occurs by means of the
HandleAuthorizationError() method.

If the authorization is successful, the OnAuthorized()
call takes place and the server transits to the Authorized
state. The client will transit from this state into the
WaitForJob state by means of the DoJobRequest() call and
will wait for the result of the RHP configuration generation.
If during the request the errors occur, then, using the
OnBadJobRequest() and OnJobRequestTimeOut() methods,
the transition into the JobReceivingFailed state is executed.

If the request limit is not exceeded, the transition into
the WaitForJob state takes place by means of
DoJobRequestAttempt().

After finishing the configuration generation, the
OnJobReceived() method will be called and the client will
transit to the JobProcessing state. The configuration will be
stored in this state. By calling the DoDisconnect() method,
the client will transit into the Disconnected state and then,
having called DoCleanUp(), it will transit into the initial
state Init. In case of the irreversible error, the server will
stay in the Error state. The transition from this state into
the Disconnected one occurs by means of the
DoUngracefulDisconnection() method.

D. Example of the Client-to-Server Communication
Consider an example of the client’s communication

with the server (Fig. 5).

Fig. 5. Example of the client’s communication with the server

When the server transits to the WaitForConnection

state, the client will send the ConnectionRequest message and
transit into the Connecting state, where it will wait for the
server response. The server, in turn, receives this message,
transits into the Connected state, sends ConnectionAccept and
transits into the WaitForAuthorization state, where it will
wait for authorization. The client, having received

ConnectionAccept, transits into the Connected state, sends
the AuthorizationRequest message and transits into the
Authorizing state. After the receipt of AuthorizationRequest,
the server transits into the Authorized state, sends the
AuthorizationAccepted message and transits into the
WaitForJob state, where it waits for the RHP configuration
generation request. Having received AuthorizationAccepted,

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua

Viktor Melnyk et al.

112

the client transits into the Authorized state, makes an RHP
configuration generation request and then transits into the
WaitForJob state. After the receipt of the configuration
generation request (RequestForCompilation), the server
transits into the WorkOnJob state and, using the
CompilationAccepted message, informs that the request is
accepted. After completing the configuration generation,
the server transits into the WaitForAcknowledgment state,
where it waits for the client’s response. Having got
OnJobDone, the client processes the configuration received
and sends the JobAcknowledgment message that
acknowledges the successful configuration receipt and
completes the communication session transiting into the
Disconnected state. The server, having received the
JobAcknowledgment message, terminates the communica-
tion session by transiting to the Disconnected state as well.

VIII. DATA PACKET FORMAT
FOR INFORMATION EXCHANGE IN CPS

BETWEEN THE CONFIGURATIONS GENERATION
SYSTEM AND THE SMART SENSORS

Information exchange between the server, i.e. the
configurations generation system, and the clients, i.e. the
smart sensors, is performed in both directions. The client
sends the program and the universal microprocessor and
RHP characteristics, while the server sends the smart
sensor configuration. This information makes the packet
payload. To support connection and keep the
management information, the packet must include the
relevant header. Fig. 6 illustrates the packet structure, in
which information is organized and the information
exchange protocol operates.

Bit

Client ID Server ID
Session ID

ChecksumHeader lengthTypeVersion
Package number

Reserved

Data

PoPW

0
32
64

128

128
+

96

0-3 8-15 16-314-7

Fig. 6. Data packet structure for information exchange
in CPS between the configurations generation system

and the smart sensor

The packet format involves the following fields:
Client’s and server identifiers. CPS may include a

large number of smart sensors. The server that generates
configurations could also be not one in the system. To
identify unambiguously both client and server, one has to
enter identifiers and indicate them in the header of the
packets that the client and server exchange.

Session number. This field allows a particular
streaming thread to be identified.

Packet serial number. Using this number, one may
renumber packets in each particular session. In case of a
loss of this number, a number that must be resent is
indicated in the serial number field.

Protocol number. The current version of communi-
cation protocol for computer devices automatic synthesis
in the RHPs of the CPS smart sensors is indicated in
this field.

Packet type. Each packet type (i.e. connection request,
connection acknowledgement, authentication, configuration
transfer, packet resending request etc.) has a unique
identifier assigned by the bit sequence. The information in
the header fields and the packet data will be treated in a
different manner depending on the packet identifier.

Header length. This field defines the packet header
size in the 4-byte words.

Checksum. The hash value calculated for the entire
packet is indicated in this field to control the transmitted
information integrity.

Completion percentage. The percentage of information
transferred from the server to the client and vice versa is
indicated in this field.

Data. In this field, the program, RHP and the
universal microprocessor characteristics, configuration,
authentication data etc. are indicated depending on the
packet type and transmission direction.

Reserved bits. Some bits of the packet are reserved
for future needs to provide the protocol expandability.

ІХ. SOFTWARE MEANS FOR REALIZING
THE PROTOCOL OF INFORMATION

EXCHANGE IN CPS BETWEEN
THE CONFIGURATIONS GENERATION
SYSTEM AND THE SMART SENSORS

The problems of implementing the software means
(SM) that realize the protocol developed are considered
in this Section. The requirements to SM are defined, the
basic modules and their components are described, and
the relations between the modules and the module
components are shown. To demonstrate the SM
operability and to verify the protocol, the operation of
one of the functional tests is exhibited.

A. Determining the Requirements to the Software
Means of Protocol Realization

During the communication protocol realization one has
to ensure its reliable operation and possibility to work with
all necessary resources by providing it with appropriate
flexibility. When forming the program interface
requirements, the peculiarities of the CPS smart sensor
architecture and the characteristics of the environment it
will operate in must be taken into account.

The requirements to the software means of this protocol
realization could be divided into two groups: the functional
ones that describe what functions the SM must perform and
the non-functional ones that describe how the above SM
must operate and what should be their properties and
characteristics [37]. The program interface must comply
with the following functional requirements:

Realization of information exchange in CPS between
the configurations generation system and the smart
sensors for computer devices automatic synthesis in
RHPs according to the protocol developed.

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua

Computer Devices Automatic Synthesis as a Service for FPGA-Based Smart-Sensors of Cyber-Physical…

113

Flexibility. Since CPS can be oriented to a wide
application range, the program interface should not
depend on the particular application.

CPS dynamical structure support. The number and
composition of the CPS objects that send and receive
messages may vary dynamically during the CPS
operation. In such a case, at the change of one object
state, all other ones dependent of it will be informed
about this event.

Data base operation support. There is a necessity to
store and gain the access to the configuration files, object
files, RHP characteristics and high-level descriptions of the
operation algorithms of the specialized computing means.

The non-functional requirements define most
frequently the qualitative characteristics of the SM under
development. Consider the principal ones of them:

Productivity.
Accessibility – defines the time of the SM continuous

operation.
Reliability – describes the SM behavior in the

emergency situation (for instance: automatic restart,
resumption of operation, data storage, important data
duplication).

Data storage time.
Convenient use and support.
Data security.
Software means and entire system configurability.
Besides the aforementioned, the following

non-functional requirements may be used at the
development stage:

Possible component reuse.
Expandability and granularity. The program

interface must consist of independent modules, each of
them performing separate function. Such organization
will give a possibility of its easy adapting to the changes
in the CPS structure and to the appearance of the new
functional requirements.

Scalability – a possibility of the horizontal and/or
vertical scaling of system or components.

Encapsulation – hiding implementation details from
the client. The clients will not require recompilation at
the pointer type implementation change. If the dynamic
library uses the opaque pointers, its modification will not
result in the binary incompatibility with the applied
programs [38].

Code portability and different hardware platforms
support. The program interface must operate at different
hardware platforms and must be compatible with the
software to be used in different CPS realizations.

Compatibility with protocols that lay on the lower
levels of the network model. The program interface must
provide the information transfer possibility via Internet
or local network, in particular, the wireless one.

Using of standard protocols and technologies of
communication between the system components and
with external software.

B. Realization of Some Non-Functional Requirements
o SM at the Development Stage

The components reuse may be reached by
representing them in a form of atomic components. If
each component has only one purpose that complies with
the “single responsibility” principle [39], then the
complex components could be represented as the
composition of the simpler ones.

Combining components, the authors used the
package principle [40]. At that, the components that are
varying or used simultaneously were combined into the
modules (libraries). The authors also decided to put into
the separate modules the file system utilities (file_utils),
the strings and the JSON format utilities (parsing_utils),
the part for work with network (network), and the inter-
process communication module (IPC). The protocol
realization itself is represented in the ota (over the air)
module. The general structure of the SM modules of
protocol realization and relations between them are
shown in Fig. 7.

To ensure the SM code portability towards the other
platforms, it is necessary to choose the cross-platform
programming language. The authors settled on the С++
language that belongs to the most common ones of this
type, allows the advantages of the object-oriented
programming to be used and supports simultaneously the
low-level constructions of the C. To simplify
compilation at different platforms, the CMake (Cross-
Platform Make) [41] – a cross-platform system of the
program code compilation automation, was used.
C. Communication Process Basic Components Modeling

The client, the server, the message, the access point to
the communication environment and the communication
environment itself are the basic components of the
communication process. Below we will show an example
of the sequence of operations that describes the commu-
nication between the above components:

at the one end, the client/server creates a message;
the client/server transmits the message to the access

point;
the access point converts the message into the form

convenient for transmission through the particular
communication environment;

the message is transmitted through the communi-
cation environment;

at the other end, the access point receives the
message and converts it into the form understandable for
the server/client;

the access point notifies the server/client about the
receipt of a new message.

The components must be independent and provide
the possibility of substitution. For example, the access
point construction depends entirely on the communi-
cation environment. If the TCP/IP protocol is used, it
may be realized using WinSockets [42] or Berkley
Sockets [43]. As an alternative, communication

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua

Viktor Melnyk et al.

114

according to the SOAP protocol or in a form of the
HTTP requests is possible. For the test needs, the
communication environment could be also realized as a
software in a form of a synchronous message queue.

Summarizing, it seems expedient to use the
“dependency injection” principle [44] and the Bridge
coding pattern [45] to realize the non-functional
requirements. This will allow one to distinguish
realization from abstraction and provide a possibility
to use different communication environments with
unchanged server-to-client communication logics. To
provide the system with configurability, we shall use
the Abstract Factory coding pattern [44].

The UML-notation of the ‘message’ component is
shown in Fig. 8(а). Here id is a unique message
identifier represented by the 64-bit unsigned integer;
type is the message type represented by the
enumeration type; timestamp is the time represented
by the 64-bit unsigned integer; body is the message
payload content in a form of a string.

To provide the flexibility of communication with the
access point for the client and server the following
interfaces are realized:

i_access_provider – the abstraction that allows the
server or client to send messages via the access point;

i_access_listener – the abstraction that allows the server
or client to receive notifications from the access point.

The UML-notations of these abstractions are shown in
Fig. 8(b).

The access point is realized as the class i_access_layer
abstraction, the UML-notation of which is presented in
Fig. 8(c). Using the register_access_listener and the
unregister_access_listener methods, the client and the
server subscribe and unsubscribe from the access point
notifications, respectively.

Combining the above communication process
components, we create the ota module that implements the
protocol. Its UML class diagram is presented in Fig. 9.

The components communication could be presented
by the relevant UML-diagram (see Fig. 10).

Fig. 7. General structure of the SM modules of protocol realization and relations between them.

Fig. 8. UML-notations of: (a) – ‘message’ component, (b) – i_access_listener and i_access_provider abstractions that realize
the client’s and the server interfaces, (c) – class i_access_layer abstraction that realizes the access point to

the communication environment

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua

Computer Devices Automatic Synthesis as a Service for FPGA-Based Smart-Sensors of Cyber-Physical…

115

Fig. 9. UML class diagram of the ota module that implements the protocol.

Fig. 10. UML communication diagram of the components communication process

This diagram illustrates both server and client
initialization and communication initiation by the server.
The messages with the 7.1 and 9.1 numbers does not
belong to the protocol and just demonstrate the data
transfer via the communication environment, however,
they are shown in the diagram for the completeness of
the communication process illustration.

D. Verification of the Protocol Realization SM
To verify the software means developed, we shall use

the positive test created using the GTests [46] – a unit
testing library for the C++ programming language. The
test scenario is as follows:

– creating two communication environments, i.e. the
server-client and the client-server ones, on the basis of a
sync queue;

– creating the server and the dummy client that will
analyze the server output messages;

– creating the access points for both the client and the
server and connecting them by the relevant commu-
nication environments;

– server registering at the access point;
– creating the separate flow that will generate the

client’s messages;
– executing the flow;
– comparing the server output messages with expec-

ted ones in the dummy client.

The results of the test execution reflected in the OS
Windows command line are presented in Fig. 11.

Fig. 11. Illustration of the server inner states transitions
in the process of communication with the client

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua

Viktor Melnyk et al.

116

Here, using the logging component, we show the
transitions of the server inner states according to the
input messages arrival from the client. In accordance
with the protocol, the Init state is the server initial state
after initialization. Then, using the start method, the
server transits into the wait_for_conn_request state (this
transition is illustrated in the command line with the
[DEBUG] Change state: init => wait_for_conn_request
string appearance). When the server receives a message
(this is evidenced by appearing the strings [INFO]
cs_ota::server::on_message_received and [DEBUG]
Income message – id: 1 type: 1, body:) in the command
line, the server transits into the Connected state and so
on according to the protocol.

Х. CONCLUSIONS
Based on the methodological and technological

approaches, namely the method of self-configuring of
the computer system with reconfigurable logic, the
Software as a Service model and the Internet of Things
technology, the method of the computer devices
automatic synthesis in the RPH of the CPS smart sensors
has been developed. This method, contrary to the
available ones, takes into account the specific features
of automatic generation of the application-specific
processors soft cores, their compilation and logic
synthesis, and makes a basis for developing the relevant
algorithmic base and corresponding software means.
Summarizing, the proposed method allows the computer
devices automatic synthesis to be realized as the service
for the FPGA-based smart sensors of CPS.

The client-server protocol of information exchange
between the RHPs of the CPS measuring and computing
nodes has been developed for the computer devices
automatic creation in them that, unlike the available
information exchange protocols, takes into account the
specific features of the automatic generation of the
computer device soft cores codes, their compilation and
logic synthesis, and does not depend on the
communication environment. In accordance with this
protocol, the technical requirements for implementation
have been formulated and the principles of design and
main algorithms of the program interface operation for
information exchange between the RHPs of the CPS
measuring and computing nodes have been developed to
provide the service on the computer devices automatic
creation in them. The protocol proposed could be used in
future not for the computer device automatic creation
only, but for solving other ‘hot’ CPS-related problems as
well, because it operates with the abstract notion of
‘task’ that may me modified depending on the purpose.

The data packet format that will operate with the
packets for the computer devices automatic creation in
the RHPs of the CPS measuring and computing nodes
has been developed. The use of the above format will
allow the information related to the smart-sensors
operation algorithms, FPGAs and their configurations

etc., to be transmitted by means of a relevant
communication protocol, whereas the fulfillment of the
requirements to the program interface that realizes the
information exchange protocol will ensure its reliable
operation and will give a possibility to work with any
necessary resources by providing it with the appropriate
flexibility.

The results of the relevant modeling have been
presented, and the software means for realizing the
protocol of information exchange between the RHPs of
the CPS smart sensors for the computer device automatic
synthesis in them have been implemented and tested.

The scientific results presented in this paper were
obtained within the framework of a research project entitled
“Integration of methods and means of information
measuring, automation, processing and protection in the
cyber-physical systems basis” (state registration number
0115U000446, code: DB/KIBER, project term:
01.01.2015–31.12.2017) supported financially by the
Ministry of Education and Science of Ukraine.

REFERENCES
[1] Melnyk A. Cyber-physical systems: design issues and

development areas / A. Melnyk // Lviv Polytechnic National
University Journal “Computer systems and networks”. – 2014. –
No. 806. – P. 154–161.

[2] IEEE Std 802.15.4TM 2011, IEEE Standard for Local and
metropolitan area networks Part 15.4: Low-Rate Wireless
Personal Area Networks (LR-WPANs). Revision of IEEE Std
802.15.4-2006, Approved 14 August 2012 by American National
Standards Institute.

[3] IEEE P802.11i/D10.0. Medium Access Control (MAC) Security
Enhancements, Amendment 6 to IEEE Standard for Information
technology – Telecommunications and information exchange
between systems – Local and metropolitan area networks – Specific
requirements – Part 11: Wireless Medium Access Control (MAC) and
Physical Layer (PHY) Specifications. April, 2004.

[4] A Survey on FPGA-Based Sensor Systems: Towards Intelligent
and Reconfigurable Low-Power Sensors for Computer Vision,
Control and Signal Processing. Gabriel J. García, Carlos A. Jara,
Jorge Pomares, Aiman Alabdo, Lucas M. Poggi, Fernando
Torres. Sensors (Basel) 2014 Apr; 14(4): 6247–6278. Published
online 2014 Mar 31. doi: 10.3390/s140406247.

[5] Moreno-Tapia S. V., Vera-Salas L. A., Osornio-Rios R. A.,
Dominguez-Gonzalez A, Stiharu I, Romero-Troncoso RJ. A Field
Programmable Gate Array-Based Reconfigurable Smart-Sensor
Network for Wireless Monitoring of New Generation Computer
Numerically Controlled Machines. Sensors. 2010; 10(8):7263-7286.

[6] Vera-Salas L. A., Moreno-Tapia S. V., Garcia-Perez A., Romero-
Troncoso R. J., Osornio-Rios R. A., Serroukh I., Cabal-Yepez E.
FPGA-Based Smart Sensor for Online Displacement
Measurements Using a Heterodyne Interferometer. Sensors.
2011; 11(8):7710–7723.

[7] Wang Y., Bermak A., Boussaid F. FPGA Implementation of
Compressive Sampling for Sensor Network Applications.
Proceedings of the 2010 2nd Asia Symposium on Quality
Electronic Design (ASQED), Penang, Malaysia, 3–4 August
2010; P. 5–8.

[8] Kaddachi M., Soudani A., Nouira I., Lecuire V., Torki K.
Efficient Hardware Solution for Low Power and Adaptive Image-
Compression in WSN. Proceedings of the 2010 17th IEEE
International Conference on Electronics, Circuits, and Systems
(ICECS), Athens, Greece, 12–15 December 2010; pp. 583–586.

[9] Chefi A., Soudani A., Sicard G. Hardware Compression Solution Based
on HWT for Low Power Image Transmission in WSN. Proceedings of
the 2011 International Conference on Microelectronics, Hammamet,
Tunisia, 19–22 December 2011; P. 1–5.

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua

Computer Devices Automatic Synthesis as a Service for FPGA-Based Smart-Sensors of Cyber-Physical…

117

[10] Sun Y., Li L., Luo H. Design of FPGA-Based Multimedia Node for
WSN. Proceedings of the 2011 7th International Conference on
Wireless Communications, Networking and Mobile Computing
(WiCOM), Wuhan, China, 23–25 September 2011; P. 1–5.

[11] Tanaka S., Fujita N., Yanagisawa Y., Terada T., Tsukamoto M.
Reconfigurable Hardware Architecture for Saving Power
Consumption on a Sensor Node. Proceedings of the International
Conference on Intelligent Sensors, Sensor Networks and
Information Processing, Sydney, Australia, 15–18 December
2008; P. 405–410.

[12] Khursheed K., Imran M., Malik A., O'Nils M., Lawal N.
Exploration of Tasks Partitioning between Hardware Software
and Locality for a Wireless Camera Based Vision Sensor Node.
Proceedings of the 2011 6th International Symposium on Parallel
Computing in Electrical Engineering (PARELEC), Luton, UK,
3–7 April 2011; P. 127–132.

[13] Kwok T. T. O., Kwok Y. K. Computation and Energy Efficient
Image Processing in Wireless Sensor Networks Based on
Reconfigurable Computing. Proceedings of the 2006 International
Conference on Parallel Processing Workshops, Columbus, OH,
USA, 14–18 August 2006; P. 8–50.

[14] Pham D. M., Aziz S. FPGA Architecture for Object Extraction in
Wireless Multimedia Sensor Network. Proceedings of the 2011
Seventh International Conference on Intelligent Sensors, Sensor
Networks and Information Processing (ISSNIP), Adelaide,
Australia, 6–9 December 2011; P. 294–299.

[15] Al-Somani T., Houssain H. Implementation of GF(2m) Elliptic
Curve Cryptoprocessor on a Nano FPGA. Proceedings of the
2011 International Conference on Internet Technology and
Secured Transactions (ICITST), Abu Dhabi, UAE, 11–14
December 2011; P. 7–12.

[16] Hämäläinen P., Hännikäinen M., Hämäläinen T. D. Review of
Hardware Architectures for Advanced Encryption Standard
Implementations Considering Wireless Sensor Networks.
Proceedings of the 7th International Conference on Embedded
Computer Systems: Architectures, Modeling, and Simulation,
Samos, Greece, 16–19 July 2007; P. 443–453.

[17] Antonio de la Piedra, An Braeken, Abdellah Touhafi. Sensor
Systems Based on FPGAs and Their Applications: A Survey.
Sensors 2012, 12(9), 12235–12264.

[18] Melnyk A., Melnyk V. “Personal Supercomputers: Architecture,
Design, Application”. Lviv Politechnic National University
Publishing. – 2013. – 516 pp.

[19] Melnyk A., Melnyk V. “IP Cores Design Methodology”. Lviv
Polytechnic National University Journal “Computer systems and
networks”. – 2002. – No. 463. – P. 3–9.

[20] Melnyk A., Melnyk V., “Self-Configurable FPGA-Based Computer
Systems”, Advances in Electrical and Computer Engineering, vol. 13,
no. 2, pp. 33–38, 2013, doi:10.4316/AECE.2013.02005. [Online].
Available: http://www.aece.ro/abstractplus.php?year=2013&number=
2&article=5

[21] Melnyk V. Self-Configurable FPGA-Based Computer Systems:
Basics and Proof of Concept. Scientific-Technical Journal
“Advances in Cyber-Physical Systems”. Vol. 1, No. 1, 2016. –
pp. 37–47.

[22] Paul Gil. “What Is 'SaaS' (Software as a Service)?”. About.
[Online]. Available: http://netforbeginners.about.com/od/s/f/
what_is_SaaS_software_as_a_service.htm. Retrieved 19
December 2016.

[23] “Definition of: SaaS”. PC Magazine Encyclopedia. Ziff Davis.
[Online]. Available: http://www.pcmag.com/encyclopedia/term/
56112/saas. Retrieved 19 December 2016.

[24] “Software as a Service (SaaS)”. Cloud Taxonomy. Open crowd.
[Online]. Available: http://cloudtaxonomy.opencrowd.com/
taxonomy/software-as-a-service/. Retrieved 19 December 2016.

[25] “Internet of Things Global Standards Initiative”. ITU. [Online].
Available: http://www.itu.int/en/ITU-T/gsi/iot/Pages/default.aspx.
Retrieved 26 June2015.

[26] Brown, Eric (13 September 2016). “Who Needs the Internet of
Things?”. Linux.com. [Online]. Available: https://www.linux.com/
news/who-needs-internet-things. Retrieved 23 October 2016.

[27] Melnyk V., Stepanov V., Sarajrech Z., “System of load balancing
between host computer and reconfigurable accelerator”,
Proceedings “Computer systems and components” of Tchernivtsi
National University. – Tchernivtsi. 2012. T. 3. Ed. 1. P. 6–16.

[28] Chameleon – the System-Level Design Solution. [Online].
Available: http://intron-innovations.com/?p=sld_chame.

[29] Melnyk A. Chameleon – Application-Specific Processors High-
Level Synthesis Environment / A. Melnyk, A. Salo, V.
Klymenko, L. Tsyhylyk, A. Yurchuk // Scientific and Technical
Journal of National Aerospace University “Kharkiv Aviation
Institute”, Kharkiv, 2009. – No. 5. – P. 189–195.

[30] Agility Compiler for SystemC. Electronic System Level Behavioral
Design & Synthesis Datasheet. 2005. [Online]. Available:
http://www.europractice.rl.ac.uk/vendors/agility_compiler.pdf.

[31] Handel-C Language Reference Manual For DK Version 4.
Celoxica Limited, 2005. – 348 p.

[32] C-to-FPGA Tools form Impulse Accelerated Technologies.
Impulse CoDeveloper C-to-FPGA Tools. [Online]. Available:
http://www.impulseaccelerated.com/products_universal.htm.

[33] Clive Maxfield, EE Times. “WebPACK edition of Xilinx Vivado
Design Suite now available”. Dec 20, 2012.

[34] Clive Maxfield, “Latest and greatest Quartus II design software
from Altera”, EETimes, November 7, 2011.

[35] Transmission Control Protocol. Darpa Internet Program. Protocol
Specification. September, 1981.

[36] Information technology – Open Systems Interconnection – Basic
Reference Model: The Basic Model. International Standart.
ISO/IEC 7498-1. Second edition. 1994-11-15.

[37] The Requirements Engineering Handbook. Ralph R. Young,
Artech House, Boston, London, 2004.

[38] Gamma, Erich; Helm, Richard; Johnson, Ralph; Vlissides, John
(1995). Design Patterns: Elements of Reusable Object-Oriented
Software. Addison-Wesley. ISBN 0-201-63361-2.

[39] “The Single Responsibility Principle”, Robert C. Martin (“Uncle
BOB”),
http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod.

[40] “Package principles”, Robert C. Martin (“Uncle BOB”),
http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod.

[41] About CMake, https://cmake.org/overview/.
[42] About Winsock, https://msdn.microsoft.com/en-us/library/

windows/desktop/ms737523(v=vs.85).aspx
[43] UNIX Network Programming Volume 1, Third Edition: The

Sockets Networking API, W. Richard Stevens, Bill Fenner,
Andrew M. Rudoff, Addison Wesley, 2003.

[44] “The Dependency Injection Principle”, Robert C. Martin (“Uncle
BOB”), http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod.

[45] “Design Patterns: Elements of Reusable Object-Oriented
Software”, Erich Gamma, Richard Helm, Ralph Johnson, John
Vlissides, Addison-Wesley, 1994, p 395, ISBN 0-201-63361-2.

[46] Google Test, https://github.com/google/googletest.

Viktor Melnyk is a professor

of the Department of Information
Technologies Security in Lviv
Polytechnic National University,
Ukraine. He was awarded with the
academic degrees of philosophy
doctor in 2004, and doctor of technical
sciences in 2013 in Lviv Polytechnic
National University. He has scientific,

academic and hands-on experience in the field of computer
systems research and design, proven contribution into IP Cores
design methodology and high-performance reconfigurable
computer systems design methodology. He is experienced in
computer data protection, including cryptographic algorithms,
cryptographic processors design and implementation, wireless
sensor network security. Mr. Melnyk is an author of more than
80 scientific papers, patents and monographs.

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua

Viktor Melnyk et al.

118

Ivan Lopit received B.Sc. degree
in information security from Lviv
Polytechnic National University,
Ukraine, in 2012, and M.Sc. degree in
2013. He is currently pursuing Ph.D.
degree in computer systems and
components in Lviv Polytechnic
National University. Besides he is a
Senior Software Developer at Intellias

Company based in Lviv. He is the author of 4 articles in
scientific journals and 7 publications in conferences
proceedings. His research interests include high-performance
computing, cyber-physical systems, memory compression,
hardware and software optimization techniques.

Andrii Kit received B.Sc. degree in
information security from Lviv Polytechnic
National University, Ukraine, in 2012, and
M.Sc. degree in 2013. He is currently
pursuing Ph.D. degree in computer systems
and components in Lviv Polytechnic
National University.

From 2015 to 2016, he was an Assistant
Professor with the Department of Informa-

tion Technologies Security in Lviv Polytechnic National University.
He is the author of 10 publications in scientific journals and
conferences proceedings. His research interests include cyber-
physical systems, software development for embedded systems,
computer systems and networks, ultra-scale computer systems,
fundamental study of operating systems and networking.

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua

