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EVALUATION OF THREE-DIMENSIONAL DEFORMATION FIELDS
OF THE EARTH BY METHODS OF PROJECTIVE DIFFERENTIAL GEOMETRY;
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Aim. The aim is this research is the evaluation of the Earth’s rigid rotation as a component of global deformation
fields in interconnection with angular distortions of the geocentric spatial coordinate system. Methodology. Solutions
will be achieved by methods of projective differential (metric) geometry based on the differential presentation of
transformations of Riemannian space images in the form of its complicated diffeomorphic manifolds. Based on the
essence of the International Terrestrial Reference System (ITRS).in which the input data are given, and on a
global scale the deformation fields, as a Riemannian manifold it is defined as a the tangent of Euclidean space. To
solve the problem are used the methods of description the change of the Riemannian metric in the tangent Euclidean
space, is parameterized by the Cartesian coordinate system. Results. The basis of the methods used enabled the
results, which are the terms of its content. The practical application has a dual interpretation. In the former , an
expression of angular distortions for needs of the deformation analysis is derived from formulas for angles of the rigid
Earth's rotation into projections on ITRS coordinate planes. At the same time, it is proven that these angles are
indicators of the coordinate system distortion. The hypothesis of probable deformations of the spatial geocentric
coordinate system is substantiated by the geophysical content of the ITRS concept. The identity of conditions of the
Earth's parameterization by ITRS and of the tangent Euclidean space parameterization by the Cartesian coordinate
system has been proven. On this basis, the truthfulness of the hypothesis can be verified by empirical values of angles
that are defined from results of GNSS-observations. In this case of significant importance, they are indicators of
angular distortions of the ITRS system or an expression by deviations from the axes orthogonality in its ITRF version
as measures of the oblique-angled Cartesian system into the any epoch of observation that follows. Using methods of
projective differential geometry the formulas are obtained for the coordinate axes directions of the deformed system.
Scientific novelty. It is proven that the approach for solving the problem of the deformation analysis in geodynamics
based on the Riemannian geometry it is generalizing relative to its use. On this basis, prospects for filing of
deformation fields by nonlinear functional models are substantiated. Practical significance. The obtained results are
designed to be used for the evaluation of global deformation fields of the Earth and solving problems of the modern
geodesy in its interconnection with geodynamics in the context of reference frame research. All analytical expression
of angular distortions is given in general form, which is able to transfer the nonlinear deformation tendencies.
A methodology of the deformation analysis is adapted to be used as input data for the results of the Global
Navigation Satellite System (GNSS) monitoring station coordinates, taking into account the probable ITRS
angular distortions.

Key words: Riemannian diffeomorphic manifolds; space metric tensor; deformation analysis; rigid rotation of the
Earth; deformation of the coordinate system.

Introduction

Evaluation and analysis of deformation fields of
the Earth is one of urgent problem solving in
modern geodynamics. Solving the problem has a
complex character and is achieved by methods from
various natural sciences. Among them, geodetic
methods occupy a special place as such that they
are able to quantitatively estimate the movement of
the Earth's physical surface and provide its study
and interpretation within the various mathematical
models. The purpose and strategic direction of
research is defined by resolutions of the
International Association of Geodesy (IAG) in the
framework of the activities of Sub-Commission 3.2

“Crystal Deformation” and of Commission 3 “Earth
Rotation and Geodynamics”. Among the priority
directions envisaged “to study the deformation of
the crust at all scales from global plate tectonics to
local deformation, to contribute reference frame
related work in order to better understand
deformations, to improve reference frames, and to
develop and coordinate international programs
related to observations, analysis, and fields data
interpretation” [International Association...]. The
main source of quantitative information for this
research is defined as the data of continuous
monitoring of station coordinates, which are
determined using the GNSS method. There is also a
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natural relationship with the IAG Commission 1
“Reference Frames”, as the reference frame
definition must be consistent with the actual crystal
deformation.

Analysis of the research and unresolved parts
of the general problem

Results of the GNSS-monitoring of station
coordinates are expressed in the ITRS. This is such
a type of reference system that is tied to the body,
which moves unevenly, not in straight lines, and
with the acceleration under the forces of the
nonzero resultant. ITRS is a non-inertial system
that moves and rotates together with the Earth.
Taking into account that the inertia of any real
reference system in general is approximate and any
point can be selected as the beginning of the
coordinate system. It is the non-inertia that makes
a certain uneven motion. The starting point of ITRS
was placed in the center of mass of the solid Earth,
the oceans, and the atmosphere. ITRS system is
burdened by a condition of No-Net-Rotation
(NNR). This condition corresponds to the
conception of the conservation of the angular
momentum of the Earth as a whole, which
coincides with a zero aggregate angular momentum
of all lithosphere plates according to their
kinematical model.

Monitoring of the ITRS system is carried out
jointly with Earth monitoring using such methods
of satellite geodesy as Very Long Baseline
Interferometry (VLBI), Satellite Laser Randing
(SLR), Doppler Orbitography and Radiopositioning
Integrated by Satellite (DORIS), and GNSS. The
combined data processing of monitoring results
obtained by these methods, and also Earth
Orientation Parameters (EOPs), which was
provided by the International Earth Rotation
Service (IERS), the time and factors of the physical
origin (the scale factor is taken into account) allows
the setting of the International Terrestrial
Reference Frame (ITRF) versions of the ITRS.
Defined on a given epoch of observations, the ITRF
version is identified as a datum. The position of the
each current datum is calculated taking into account

the displacements 7,,7,,7. of the system starting

point relative to its pre-implementation, the scale

factor D, changes of the coordinate axes
orientation R..R s R, and velocities
Tx,Ty,TZ,D,Rx,Ry,RZ. ITRF solutions based on

this data are achieved using the well-known
Helmert transformation. IERS recommends the use
of its linearized form [IERS Conventions...??].
Transformation parameters for the latest ITRF
solutions are presented in Table. Parameters were
obtained under the coordination of the ITRS Centre
of the IERS, hosted by the National Geographic
Institute (IGN) of France. According to a UN
General Assembly resolution dated 26 February
2015, the program sought to support and improveg
the geodetic infrastructure and ensure the
sustainable development this ITRS Centre that is
recognized as a responsible institution in
determining the content of ITRS and achieving
ITRF solutions for the creation of Global Geodetic
Reference Frame (GGRF).

The choice of the ITRS starting point, which
corresponds to the center of mass of the solid Earth,
oceans, and atmosphere today, is debatable. Thus,
according to the arguments [Argus et al., 2010],
such an approach is not always confirmed in
practice. The motion velocity of the geocentric
system starting point, according to the authors, is
not a constant as there are unacceptably large
differences between ITRF versions. For example,
the linear velocity of its motion in the ITRF2005
differs from ITRF2000 by 1.8 mm/year and from
ITRF1997 by 3.4 mm/year. In addition, some ITRF
versions give the position differently and then
determine the starting point velocity accordingly.
Thus, in ITRF1997, the starting point is defined by
the joint processing of observation data using the
GNSS, VLBI, and SLR methods as the geometric
center of the solid Earth's shape. Its velocity is the
average velocity of the Earth's surface determined
under the hypothesis of the sustainability of its
motion within the NUVEL-1A kinematical model.
In ITRF2000 (and in the following ITRF versions),
the starting point already has been taken as the
center of mass of the solid Earth, oceans, and
atmosphere under the NNR condition, and its
velocity is determined by the SLR observation of a
LAGEOS (LAser GEOdynamics Satellite) orbit. In
order to eliminate these inconsistencies, the
lithosphere plate’s movement velocities
(GEODVEL) [Argus et al., 2010] are determined
under the hypothesis that the starting point is the
center of mass of the solid Earth. The components
of geodetic velocities are computed taking into
consideration the motion of the solid Earth’s center
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of mass regarding the starting point of ITRF2005,
amended by 0.3, 0.0 and 1.2 mm/year in the
directions of the coordinate X, ¥,z

respectively. Station velocities in ITRF2000 are
amended by -0.1, 0.1 and -0.6 mm/year and
assigned to the same mass center. On such a basis
the kinematical models MORVEL [DeMets et al.,
2010] and NNR-MORVELS56 [Argus et al., 2011]
are created. The reasoning for this kind of
amendment used to eliminate systematic offset of
an ITRS starting point, in regard to the center of
spherical readout base of plate rotation (as the solid
Earth center of mass), is presented by [Kogan,
Steblov, 2008]. The research results presented in
[Wu et al, 2011], show the coordination of
ITRF2008 starting point with the solid Earth center
of mass at the level of 0.5 mm/year and then, in
terms of a numerical indicator, previous arguments
are being questioned.

This is contradictory, concerning the
presentation in Table, to results obtained by the
analytical centers of the International GNSS
Service (IGS). For example, the combined solutions

axes
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relative to the ITRF2005 version showed the
geocenter displacement estimates at the level 5 mm
in components x, y and 10mM in the z component.

The inconsistency of orientation parameters with
the IERS data are estimated at the  level
(-0.04—+0.05)x  0.001" with an accuracy
+0.05x0.001" [Ferland, Piraszewski, 2009].

In [Altamini et al., 2012] a kinematical model
ITRF2008-PMM was presented, under which
conditions of the geocenter position corresponded
to the center of mass of the solid Earth, oceans. and
atmosphere. This substantiated its obtainable
accuracy at the level 0.3 mm/year and also
presented comparisons with other used kinematical
models. The model has been coordinated with the
ITRF2008 version and is taken as a basis of the
NNR-condition in the ITRF2014 solution and is
associated with it as the newest plate motion model
version [Altamini et al., 2016].

The aforementioned facts certify the absence of
an unequivocal approach to the choice of the
starting point of the geocentric system and
determination its displacement.

Transformation parameters amongst the latest ITRF solutions
[Altamini et al., 2007; 2011; 2016]
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Used as input data, the results of GNSS-
measurements significantly enhanced the potential
of geodetic monitoring of the Earth's deformation
fields. At the same time the ambiguity of datum
establishment has created a problem that is
associated with the effect of the loss of the
invariance of deformation parameters. This led to a
rethinking of the theoretical foundations of the
deformation analysis and the development of new
models and methods of data processing.

Studies of the influence of the reference system
changed the interpretation of the deformation fields

that were started in the time of introduction into
research practices of modern satellite navigation
technologies. It is probable that such consequences
of such influence have previously accented
attention, for example, [Dermanis, Grafarend,
1993]. The analysis of the effects of loss of the
invariance of deformation parameters is presented
in [Vanicek et al., 2008; Dermanis, 2009, 2010].
The problem of transforming the observed data into
a single epoch remains relevant even until now. In
order to balance the GNSS-data, transformation and
theoretical foundations of continuum mechanics in
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[Dermanis, 2010; Hossainali et al., 2011a, 2011b]
are proposed methods which take into account these
effects as at the ITRF solution epoch. Methods are
based on a singular value decomposition of the
deformation gradient and the classical theory of
elasticity in its simplest linear form.

If you need to conduct the deformation analysis
as at observations epoch that do not coincide with
ITRF solution epoch, the influence of the effects of
the invariance loss increase significantly .

This vision of solving problems of evaluation of
three-dimensional deformation fields of the Earth in
[Tadyeyev, 2015] is substantiated. The deformation
analysis problems are considered in the context of
“external modeling”, as formulated in [Grafarend,
Voosoghi, 2003]. Taking into account the defined
tasks statement, there is reason to consider the
problem including those that consider the probable
effects of the loss of the deformation parameter’s
invariance.

The problem in the estimation of the three-
dimensional deformation fields is considered from
the standpoint of the differential presentation of
transformations (mappings) of space images and the
use of projective differential (metric) geometry
methods [Kagan, 1947; Finikov, 1937]. According to
the hypothesis that transformations have a
geophysical origin, they are identified with
deformations of the Earth's topographic surface as a
domain of space. Then, using the three-dimensional
metric tensor of space reveals perspectives to
describe the deformation with different numerical
characteristic content. Considering the established
practice of the deformation analysis, these
characteristics are divided into three groups: 1) main
linear deformations — parameters of the form with
change in the specified direction; 2) angular
distortion parameters; 3) dilatation — parameters of
relative changes in the volume of the Earth or the
area of its surface while preserving the overall form.

Aim
The aim of this research is based on the theory
of  differential presentation of space image
transformations. This part of the research will focus
on the evaluation of angular distortions associated
with the effects of rigid rotation of the Earth as a

space transformation domain. Taking into account
the concept of creating an ITRS, expressed as the

input data, try to associate such distortions with
probable deformations of the coordinate system and
with the effects of the loss of the invariance in the
interpretation of deformation fields of the Earth.
Also it will try to present the solution results in a
general view from the perspective of expression of
the deformation using nonlinear analytical forms.

Methodology

A mapping (or transformation) of the space is a
process where each point M of space corresponds
to a certain point M. The point M’ is a mapping
(or a projection) of M . The totality of points M,

—_—

(i =1,n) of a certain part or even the whole space,

is subject to unambiguous mapping (or
transformation), forms in the transformation
domainA. The totality of point A, that

corresponds to point M; forms the transformed

domainA’. If in the three-dimensional Euclidean
space is installed the system of Cartesian
coordinates (x,y,z) and the domain A is closed
the Mi(xiayiazi)
completely defines (or delineates) the domain A . If,
due to the unambiguous transformation of space the

and  continuous, points

domain A mapped on A’ and latter retained
properties of the closed and continuous domain, the
point Mi'(x,f, yi,z; ) is completely defined by the
domainA’.

Let it be known that the transformation
domain A of the Earth as a planetary scale spatial
body has coordinates x; =X;, y, = X?, z; = X;
and that point M, meets the conditions of Earth
parameterization by the ITRS. Points M, are the
GNSS-stations which are located on its physical
surface. Designations (X ''x%2 x 3) are identical to
the(x,y,z). They are introduced solely for the
purpose of a compact presentation of the following

intermediate and as the final results of the

problem’s solution. If coordinates x| =X,

yi=X’

I 9

z/ = X}* define the position of point
M, which is the mapping point M, and defined

as a transformed domain A', the mapping of A on
A" can always can be expressed analytically by
equations



leodesis, kapmoepadghiss i aepogpomosHimarts. Bun. 84, 2016 29

X2 =vwXx'x?, X%}, (1)
X3 =wx', X% x%)

The general theory of mapping imposes on the

base functions of  transformation Q))
homeomorphism conditions to include:
uniqueness, continuity, and differentiability

(Jacobian different from zero), but do not limit their
analytical forms. This allows one to describe and
transmit the transformation by any smooth or
piecewise smooth functions which can be

determined by the displacements X ;¥ — X

(k= B) along a certain means of a parametrically

given curve. In terms of the formulated objectives,
this provides the prospect of the transfer within the
functional model (1), of the nonlinear
transformations.

A formulated problem statement in the part of
the functional presentation of the transformation, at
first examination, should entail a combination of
mathematical tools which must be used to address
it. The fact, that a solution with these kind of tasks
is carried out in the environment of Riemannian
space R, and in this case in the R; dimension.

Our task is formulated in the Euclidean space Ej
which is only a partial case of R;, in addition to the
of FE; parameterization by the

rectangular Cartesian system of ITRS type.
However, any complications or contradictions are
eliminated if we use the properties of Riemannian
space in the form of its complicated diffeomorphic
manifolds. Diffeomorphic manifolds are called a
couple of non-isotropic manifolds of the same
dimension »n=3 that are subject to mutually
unambiguous and continuously differentiated
(homeomorphic) mapping. In this formulation,
Riemannian geometry considers a diffeomorphic
manifold E5 as tangent to the Riemannian space.

conditions

Overall, a Riemannian space R, is any

manifold of the » dimension where in the infinitely
small scale around the point M with coordinates
Xl,...,X” can be set as the field of a twice
covariant, symmetric, with no degenerate tensor

gij(M):gij(Xl,...,Xn), i.e. such as detg; #0

and g; =g ;. As for the other tensor g; (M), it is

set arbitrarily — on one tensor however the same
manifold can be differently imposed as a
Riemannian metric. Riemannian manifold
geometry does not have the strictly formalized and
hard character, as in the Euclidean space, and when
compared to the previous, is amorphous and
plastic. The manifold geometry depends only on its
parameterization by its varying coordinate system,
in the domain of change which is carried in
manifold mapping in the form of continuously
differentiated transformations of the n—1 class.
Such transformations respectively define the class
of smooth or piecewise smooth functions that are

able to transmit these transformations, i.e. C "1 In
addition, it is the only manifold to be considered
having  the accuracy of its replacement by a
diffeomorphic manifold as long as this replacement
is presented with the functional dependence
between the point’s coordinates in both manifolds.
THIS PREVIOUS SENTENCE IS VAGUE AND
UNCLEAR. The domain of the function’s
definition is every point on the manifold. At each
point these functions define a tensor g; (M) and

their totality forms a tensor field. Therefore there is
a need to set a tensor field instead of a tensor as a
separate point, which is enough to determine the
appropriate functions. The manifold
parameterization by the coordinate system is
carried out by a local frame (basis) in the tangent
space. As local frames they are themselves
coordinate systems that are considered in the space
of their infinitely small scale around the points. If
the local frame system along the parameterized
curve is in a certain way, a parameterized curve
occurs as the infinitesimal displacement ds of the
point M, then the differential of arc ds is
expressed by the differential quadratic form

ds* = g;dX 'dX’ (designation of the sum by

Einstein rule); ds? the linear element of
Riemannian space. From this standpoint, a
Riemannian space is the manifold in which is set by
the invariant differential quadratic form ds>. Thus,
a tensor field of the Riemannian space is identified
with the linear element ds> , which determines its
metrics. The tensor g; is a geometric image of the

manifold [Rashevsky, 1967].
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In view of our objective as a manifold it is the
Euclidean space, which is tangent to an every given
point of Riemannian space in the form of a local
three-dimensional orthonormal coordinate basis of
the ITRS type system. Then a tensor field with the
Riemannian metric, which is defined by functional
model (1), is transformed into geometric images of
tensors of the tangent Euclidean space
corresponding to it metric. Thus, for solving the
problem we need only to comply with the
conditions of sufficiently smooth changes of the
Riemannian metric in the transition from point to
point. These conditions must ensure the adequately
constructed model (1) by the continuous
differentiability of its base functions. Since the
tangential coordinate bases both before and after
the space transformation meets the conditions Ej,
the formulated problem statement remains
unchanged. Riemannian geometry methods are
needed only at the stage of construction of the
functional model (1). It must be noted that such
model is able to solve the problem of the
deformation analysis in geodynamics at the
hypothesis that changing the metric of space has a
geophysical origin and is caused by its deformation.

Let the coordinate system in which it is
specified that the position of point M; of the
domain A (the initial state of the Earth at the time
moment?,) is a rectangular Cartesian and is

identified with the ITRS. The linear element of the
domain Ais

ds® =o,dx'dx’ . )

Since the coordinate axes are orthogonal, the metric
coefficients & are such that

1 i=j
5!/ = {0 . .
i#J
They form the identity matrix. Linear element dfs
identifies a metric form of the nodeformed domain
A in the initial state.

Metric form of the deformed domain A’ (the
final state at the time moment?; =¢, +dt;) is

associated with a linear element ds’ that is a

mapping of the ds :

ds'* =e;dX'dx’ . (3)

Metric coefficients e; of the quadratic form (3)

generate a symmetrical matrix which is called the
main bivalent metric tensor of the space
transformation (deformation):
e e ‘s
€j =| €2 €xn €3 | “4)
€13 €23 €33
Coefficients e; fully define the functional model

(1). The algorithm of disclosure for the coefficients
is the following:

ou 2 ov : ow 2
e = 1 + 1 + 1 5
oX oX oX
. _( ou 2+ ov jz_'_( Bwjz‘
27 ax? ox? ox?)’

. _(8u 2+ 6vj2+(8wj2.
3 ax3 ox3 ox3)’

. _ Ou Ou ov 0ov ow ow
PTaxtax? ax'oax? ox'ax?’

Oou Ou ov 0ov ow ow
€33 =

+ + ;
ox?ox® ox?ox® oax?ox?
ou Oou ov Ov ow ow

1 3 + 1 3 + 1 3
oX oX oX oX oX oX

)

€3 =

According to the general theory of tensor

analysis, a tensor e; is the main carrier of

information about the state and nature of the final
deformation of the domain A and, equally, about

the deformation of the coordinate system X'
(i:f?;), in particular, regarding change in the
orientation of the coordinate axes (rotation) and (or)
infringement of their orthogonality. In case of
equality ds=ds’' has no deformation, it can only
be the parallel displacement of the transformation
domain and coordinate system as a whole. If
ds#ds',
displacement the deformations are taking place
simultaneously with numerical expressions and

then it is a sign that with such

character that depend on the absolute values of ¢;

coefficients in general and ratios between diagonal
and non-diagonal e; coefficients. As a measure of

the deformation a difference of quadratic forms (2)
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and (3) or their ratio, [Sokol’nikov, 1971] is most
often used.

Results

Using the geocentric system ITRS in the form
of her ITRF versions forces one to consider the
following statement in solving  geodynamics
problems in general and for deformation analysis.

The initial state of the Earth as a space domain
A that is parameterized by the rectangular
Cartesian coordinate system at the time moment ¢,

ascribe to the datum, which corresponds to the last
ITRF version. If the domain A at the time moment
t; =t, +dt, is transformed into the domain A’ in

the final state an appropriate transformation has
also undergone the coordinate system. The system

X" G :f?;) is deformed relative to her state in

the datum. Thus, in addition to the parallel
displacement of the starting point (due to the
translational motion of the Earth), there can occur
an infringement of coordinate axe’s orthogonality.

Then the X'’ system becomes an oblique Cartesian
coordinate system.

The hypothesis of ITRS deformation may be
acceptable along with the following logical
opinions. They are based on the geophysical
essence of the NNR condition, which is used when
creating the system. This condition puts the system
dependent on the global tectonic activity of the
Earth. One of the effects of such activity is recent
movements and deformations of lithospheric plates.
A substantial expression and anomalous character
of such phenomena can violate the NNR condition
as the conception of coincidence of a zero
aggregate angular momentum of all plates and
angular momentum of the Earth as a whole. In such
a case it will be inevitable that there will occur a
deformation of the ITRS, which is used for the
Earth parameterization. The hypothesis may be
confirmed or, equally, denied by the empirical
method if in its basis put the following indisputable
geometric argumentations.

In general, for any two points P (X ") and
P(X "+dX") of the three-dimensional space
(i =f3;) with its quadratic form ds? = g;dX ‘dx’
it follows that the lengths of the elements of the arc

ds in projections on coordinate axes of the system
which is used for the parameterization of space, are

expressed by products ds D= gidX ! Superscript

in projection ds? symbolizes her belonging to the

respective axis X'. Cosines of angles n; between

couples of projections ds'? and ds") as they are

shown in Fig. 1, express the formula [Sokol'nikov,
1971]

8ijj

VE8ii&ji .

(6)

cos 1y, =

Fig. 1. Angles between projections
of the arc ds on coordinate axes

If in the initial state at the time moment ¢, the

coordinate system is rectangular, the metric

coefficients g; =J,; and 77,5-0) =90° will follow

the formula (6). Generally the formula (6)
expresses angles between coordinate axes of the
arbitrary are not-orthonormalized system in three-
dimensional space with metrics that correspond to
the tensor g;; . If at the time moment #; a space has

undergone a transformation that caused the change
of its metric properties, then g;; =e; . With metric

coefficients e;; associated the absolute linear

124
elongations of space, which is directed along the
coordinate axes. The coefficients e; provide i# j

are called shear (sliding). Assuming thate; #0,

we obtainn,-(jl)¢90°. Then 7715.1)

of the oblique coordinate

Superscripts in angles 77,5.0)

are absolute
measures system.
or 771-5-1) symbolize their

belonging to time moments f, or#,. Submitted
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facts must be recognized as sufficient
argumentation of possible loss for the coordinate
system’s orthogonality according to the above
formulated problem statement.

To express the deformation of the domain A

for the period df; with respect to its initial state

takes as a basis the quadratic forms (2) and (3). If
the measure of deformation has a difference

ds'* —ds* then the change of arc length per unit
length will be expressed in the formula

ds'? — ds?

~ ax' dax’
ds? '

ey =) GG

Coefficients u; =,/e; —1 are the relative linear

elongations in projections ds'". Then the formula
(6) takes a form

e..
cos 7715-1) =—7 (7
' Hil;

D _ ane 1 @ .
;-)—90 —5;),where gij)lsa

change in the initial right angle between a couple
of arc elements, which are directed along
coordinate axes. Then from formula (7) follows:

Let us assume that 7

e..

sin 6‘[5-]) =7, (®)
Hil;
O] ™ ;
If angles ¢;° are small, thene;” ~e;, that is
considered practically permissible from the
standpoint of the classical linear theory of
deformation.

The submitted solution is based on the theory of
tensor analysis in the presentation [Sokol'nikov,
1971]. In the context of solving the problem angles

()
ij

hand, these are indicators of angular distortions of
the coordinate system relative to its state in ITRF
version. On the other, considering that the ITRS

g;;’ it can be interpreted in two ways. On the one

system is "tied" to the Earth, angles 515.1) express

her rigid rotation as an absolutely rigid body in
directions between couples of coordinate axes

XX/ for the period dt, relative to the same ITRF

version.

Consider the problem from another perspecti-
ve — in projections of the arc ds on coordinate
planes. Let us take as a basis professor G.A.
Meshcheryakov’s solutions for the definition of
optimal projections while mapping various surfaces
on a plane in mathematical cartography [Meshche-
ryakov, 1968]. On this basis the angular distortions
of two-dimensional Cartesian coordinate system are
expressed, as presented in [Tadyeyev, 2013].

Let the differential dX> =0 and projection of
the arc ds lay on the equatorial plane X lox?.
Here quadratic forms (2) and (3) have the

appearance ds12 ) =0;dX dx’ and

dsiy =eydX'dX’, where i,j=12. Taking into

account that it is now considered as only full

differentials of functions (1) such as

dax' = aul dax!' + au2 dx?;
ox ox

dx'? = avl ax! + 6V2 dx?,
ox ox

algorithm (5) simplifies and metric coefficients e;

will be disclosed as follows:
ou 2 ov 2
en=\—1| * i
oX oX
(Y (o)
2\ w?) ar)

ou Ou ov Ov
=l av2 T Aol Av2
oX oX oX oX

)

€12

Assume that due to deformation the coordinate
axis X! is reflected on the plane X lox? by
projection X'! . The direction of the projection X!

relative to X' defines the angle 1//1(;) . Similarly, the

direction of the projection X "2 of axis X ? defines

M

the angle y,,’. These directions are shown in a

scheme (Fig. 2, a). Explicit expression of directions

l//l(;) and ;(8) are the result of ratio of the

differentials of the coordinate axes projections on a
mapping plane in the final state, which are
presented in the coordinate system of the initial
plane as:
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dx'? ov ou
=|— =tgyly; (10)
dx' |ax3=o ox' )] Lax"
X2=const
dx’? ov ou
= —tg;glg). (11)
dx' ax3=o ox? )] \ex?
X'=const

Considering formulas (10) and (11), from the

) 1)

difference ;((1) v, =N, We obtain:

ou Ov 3 ov Oou

o _ox'ax? ax'ox?

t .
g2 ou Ou ov oOv
1 2 + 1 2
oX oX oX oX

The expression in the numerator is associated with
an absolute indicator of changes in the area of the
domain A in its projection on a plane X lox?.
This is a determinant of the tensor formed by the

coefficients (9): e, e,, —ef, =det e; . Therefore
Jdete;
gn) = v (12)

e

And now for the indicator of angular distortions
s ~00° — )

dete;;
1 ij
ctggl(z) - . (13)
12

Expressions of the angle 77(1) by formulas (7)
and (12) and equally the angle 512) by formulas (8)

a—X'0x3 b-X0x

and (13) are respectively identical. This you can
easily verify by simple transformations of formulas

(12) or (13) taking into account the measure of
deformation ds|3 — ds{, .
On the same basis implemented solutions and

obtained explicit expressions of directions l//(l)

;((1) and indicators of angular distortion 77(1), are

(Y]

€'’ in projections in other coordinate planes of the

—

system X' (i=13). In particular, in projection on

aplane X'0X>

dx" ( ow j /( ou j 0
=|— =tgy3y 5 (14)
dX"" ax2=o ax' )/ \ax! B
X3=const
dax’? ow ou
MEE
dX" |ax?=0 oX oX
X'=const

Directions that are expressed by formulas (14) and
(15), shown in a scheme (Fig. 2, b). A scheme
(Fig. 2, c) shows the axe’s directions of the

deformed system in projection on a plane X *0X°.
They are expressed by formulas

3
ax :( ow j/( ov j (1) (16)
12 2 2 23 >
dX'"* |ax'=o oX oX
X3=const
ax "’ ow v
dX' |ax'=o oX oX
X?%=const

c—-Xox’

Fig. 2. Axes directions of the deformed system
in projections on coordinate planes
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Fig. 3. The transformations scheme of the A domain

)

If angles 771(].1) and 515-1 are only measures of the

loss of the coordinate system orthogonality, the
values l//;l) and ;515-1) are able to transmit the

directions of deformed system axes relative to its
initial state. From this point of view the results of
task solutions in projections on coordinate planes
have obvious advantages. Analysis of the geometric

nature of values l//;-]) and ;(l-}]) show their direct

analogy with geocentric polar coordinates which
are traditionally used in geodesy. In particular, the

angles y/g) and ;(S)

A in directions on the equatorial plane relative to

the zero meridians plane. The angles l//g), ;(1(;)

Q) 1)
Yas X3

directions relative to the equatorial plane onto
longitudes A=0° and 1=90°
necessary, without any complications from formula
calculations, the latitude ¢ can be replaced by its

have a geocentric longitude

and

with a geocentric latitude ¢ with

respectively. If

complement to 90° which referred to as polar
distance. Then we can evaluate the position of axes
X", X", X" about the axis of rotation in its initial

state X =z .

The only real obstacle to the practical
implementation of the described methods can be an
insufficient density coverage of the Earth by
GNSS-stations, particularly within the oceans. It is
this circumstance that determines the adequacy of

constructing a functional model (1) with planetary
scale and reliability for the above estimates, that
are its consequence. Theoretically, this problem
could be solved by a global grid construction, for
example in the form of spherical or ellipsoidal
quadrangles or triangles, if one involves the
Delaunay triangulation method, followed by
extrapolation of displacements in grid nodes
relative to stations in mainland and insular parts of
the Earth. Such a mathematical tool was used in the
research practice (see, e.g., [Marchenko et al.,
2012]). But the accuracy of extrapolation to great
distances will be low and for this reason will
probably lose its sense in the idea of expressing the
nonlinear deformation on a planetary scale. In this
regard, to find the optimal solution, the problem of
constructing an adequate functional model requires
a detailed study and to date remains open for a
comprehensive discussion.

Finally, consider the overall logic in making
the
deformation analysis according to the transfor-

the decisions regarding task statements in

mations scheme in Fig. 3.

Let us assume that the hypothesis of the
coordinate system deformation at the time moment
t; is confirmed as such, that does not contradict the

empirical data. The empirical values of indicators
of angular distortions can be compared to their
analogues that are presented in the Table #?.
Consider the studies necessary to evaluate the
deformed state of the Earth at the time moment
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t, =t +dt, =ty +dt; +dt,. If you want to solve
the problem relative to datum at the moment ¢,
during the perioddt, +dt,, without taking into
account the state of the Earth at the moment?,, the

method does not require any changes. To solve the
problem during the period dr, relative to #; a
solution is presented in the above form, but is
disclosed in [Tadyeyev, 2015], as unacceptable.
Such a formulation of the problem leads to the need
of constructing a functional model

an ZM'(X'I,X’Z,X'?’)

X"Z :v!(X/I’Xr2,X/3) , (18)
Xﬂ3 _ W/(X/l ,X'Z,X’?))
where X”l :xr!,Xer =y",X"3 =" are

diffeomorphic coordinates of the domain A" at the
moment?,. The domain A" is a mapping of A’

and as the domain of definition of the base
functions of the model (18). The metrics of A"

define a tensor ej; and the corresponding quadratic

form in coordinates of the domain A’ take the

appearance ds"” =e;dX"dX'/. A tensor e} as a

.
ij
geometric  image of A"  according to
transformations (18), also expresses the change of
metric properties of the domainA’. Since such a
change is taken into account relative to the state at
the moment?,, the next deformation analysis must

be based on the difference e —e;; and on the

ij ij
measure

"2 12 ' i rj
ds"” —ds'" =(ej; —e;)dX"dX"/.

Such a modification of methods is able to
provide the deformation fields estimates that are not
burdened with the likely influence of the effects of
coordinate system distortion and the loss of
invariance in relation to the datum.

Scientific novelty and practical significance

The task solutions have been achieved by
projective differential geometry methods based on
the differential representation of  the
transformations of Riemannian space images in the
form of its complicated diffeomorphic manifolds, in
particular, the tangent Euclidean space. Such an

approach to solving problems of the deformation
analysis in geodynamics is generalized relative to
the traditional methods used. On this basis,
prospects for filing of transformations by nonlinear
functional models are substantiated. The identity of
the Earth's parameterization by ITRS and of the
tangent Euclidean space parameterization by the
Cartesian coordinate system has been proven.
Based on the concept of ITRS, her possible
deformations are substantiated. The analytical
expressions of ITRS angular distortions are
obtained. They are considered in the context of the
rigid rotation of the Earth, as a component of its
global spatial deformation, in projections on
coordinate planes. Methods of the deformation
analysis is adapted to use the results of GNSS
monitoring of coordinates, taking into account the
likely deformation of the ITRS. As efficient tools of
definition, the current position of the axes of the
deformed coordinate system, the obtained results
also have  practical significance in solving
problems of modern geodesy in its relationship to
geodynamics in the context of reference frame
research.

Conclusions

At this stage of research the formulated
perspectives of using the results of GNSS-station’s
coordinate monitoring in the ITRS for modeling the
global Earth's deformation field in the part of the
expression of the angular distortion parameters. The
task solutions achieved by projective differential
geometry methods based on the differential
representation  of the  transformations  of
Riemannian space images in the form of its
diffeomorphic manifolds. It was also applied to the
methods of description to the change of the
Riemannian metric in the tangent Euclidean space,
which is parameterized by the Cartesian coordinate
system. Such a theoretical basis enabled us to get
the result, which in terms of its content and the
practical application has a dual interpretation.

1. In the part an expression of angular distortion
parameters are derived the formulas for the angles
of the rigid Earth's rotation as a component of its
global spatial deformation into projections on ITRS
coordinate planes. This result has a direct
application in the analysis of global deformation
fields for the needs of geodynamics.
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2. Based on the geophysical content in the
concept of creating the ITRS system, her probable
deformations are substantiated. The truthfulness of
this hypothesis can be verified by the same angles
as are defined in the previous rubric. If to consider
them as indicators of angular distortions of the
ITRS expressed by deviations from axes
orthogonality in ITRF solution epoch (as a datum),
the latter should recognize the measures of the
oblique system in any epoch of observations that
follows . The analytical expressions for coordinate
axe’s directions of the deformed system are
obtained. In terms of this rubric the obtained results
could apply in solving problems of modern geodesy
in its relationship with geodynamics in the context
of reference frame research.

Recommendations for the formulation and
solution of deformation analysis problems, in the
case of empirical confirmation of the hypothesis of
angular distortions of the coordinate system, are
presented.

Analytical expressions of angular distortions are
given in the general form, which is able to transmit
the deformation of a nonlinear character as far it can
be expressed by base functions of the model (1). The
efficiency of nonlinear models of the Earth's
physical fields today is obvious even if we take into
account the consequences of their use at the creation
of the newest version of the ITRS: the generalization
of ITRF2014 solution with an extended modeling of
nonlinear movements of stations (seasonal signals
and post-seismic deformations) provided a
significant increase in its accuracy compared to
ITRF2008 [Altamini et al., 2016].
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OLIHIOBAHHSI TPUBUMIPHUX JE®OPMAILIMHUX MOJIB 3EMIII
METOJAMM ITPOEKTUBHO-JU®EPEHLIIAJILHOI TEOMETPIL. Y)KOPCTKI OBEPTAHH S 3EMIJII

Meta. OmiHOBaHHS >KOPCTKOTO 00epTaHHS 3eMJli K CKJIam0BOl Tio0ampHUX aedopMalliifHux momiB y

B3a€M03B’H3Ky 3 KYTOBUMHU CIIOTBOPCHHAMH l"eOHeHTpI‘ILIHOT HpOCTOpOBOT CUCTEMU KOOpJAUHAT. MeTO)]I/IKa.

Po3B’I3KM  OCSTHYTO MeTOolaMM IIPOeKTHBHO-AH(epeHIliaibHOT  (MeTpUIHOT) TeoMeTpii Ha OCHOBI

nude-

PEHITIATRHOTO TIOJIAHHS TIEPETROPEHE 00pa3iR PiMaHOROTO TpocTopy y hopmi Horo ckrmaganx muddeomopdHIx
MHOroBujiB. BpaxoBytoun cytHicts cuctemu ITRS, y skift 3amano BxiaHi jgaHi, Ta ri100anpHHE MaciTab

nedopManliftHuX IOJTiB, piMAHOBMM MHOTOBH/IOM BH3HadeHO NOTHYHHH eBkIimoBHNA mnpoctip. 1llo6 Bukonatn

3aBJIaHHs, BUKOPUCTAHO NIPUHOMH OMKCYBAHHS 3MiH PIMaHOBOI METPHUKH y TOTUYHOMY €BKITIJIOBOMY IIPOCTOpI, SIKHH
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rIapaMeTPHU30BaHUM JIeKapTOBOIO CHCTEMOI KoopauHaT. PesynbTatn. BukoprcToByBaHa OCHOBa [1aia 3MOTY
ONIEPKATH PE3YNBTATH, SIKI 3 HOTTAMY iX 3MICTY 1 MPAaKTUYHOTO 3aCTOCYBAHHS MArOTH JBOSIKY 1HTEPIIPETAILifO.
VY uacTuHI BHpasKeHHS TPy apaMeTpiB KyTOBUX CIIOTBOPEHS JUIS HOTped nedopMmariifiHoro aHasizy BCTAHOBIIEHO
CIIIBBITHOIIIEHHS JUTA KYTIB XOpPCTKOro obGepTanHs 3eMili B IPOEKIIisAX Ha KoopAauHaTHI IntomuHA cuctemu ITRS.
Bonmowac noBereHo, o Il KyTH € [OKa3HUKaMH CIIOTBOPEHb CHCTEMH KOOpAMHAT. [imoTesa HMOBIpHHX
nedopMalriifi TEOIIEHTPUIHOT NPOCTOPOBOT CHUCTEMU OOTPYHTOBAaHA TEO(I3UIHUM 3MICTOM KOHIIEHINT CTBOPEHHS
ITRS. ApryMeHTOBaHO TOTOXHICTH yMOB mapamerpu3auii 3emui cucremoto ITRS i1 mapamerpmzanii moradHOro
€BKITIZIOBOTO TIPOCTOPY NEKAPTOBOK CUCTEMOK KoopauHat. Ha 11ili 0CHOBI ICTHHHICTE TITIOTE3H MOXKHA TIEPEBIPUTH
3a EMIIIPUYHAMH 3HAYEHHSMHU KYTiB, fKi BH3HaueHi 3 pe3yrnpTarie GNSS-croctepexens. 3a YMOBH JIOCTATHBOI
3HAYYIIOCTI, BOHH € MOKa3HHKAMH KyTOBHX crotBopeHb cucteMd ITRS wuu, y BHpakeHHI BIIXHIEHHAMH Bin
oproroHansHocTi oceil y ITRF-peamizamii, MipaMH KOCOKYTHOI JekapToBOi CHCTeMH Ha Oyab-SKy €IoXy
CriocTepeskeHb Michs peammizamii. MeTomaMu TpoeKTHBHO-AH(epeHIliaTbHOT TeoMeTpil ofepikaHO aHaTITHYIHL
BUP@KEHHs HAOPSAMIB KOOpIUHATHUX oceill jgedopmosanoi cuctemu. HaykoBa HoBm3Ha. [JoBejeHo, 10 miaxia a0
po3B’si3aHHA 3a51a4 feopMallifHOTO aHami3y B reoJWHAMIIl Ha 3acajiaX PIMaHOBOI TeOMETPIl € y3araTbHIOBATEHIM
BITHOCHO BHKOpPHCTOBYBaHOTO. Ha Takifi OCHOBI OGIpYHTOBAaHO TEPCIEKTHBH TMOJaHHA AedopMalliifHAX OB
HENHIMHEUME (YHKIIOHATBEHAME MonensMy. [IpakTuuna 3Hauymicts. OnepikaHi pe3ynbTaTd CIIPSMOBaHI Ha iX
BUKOPHCTAHHA i 4Hac OIIHIOBAHHS T100aibHUX nedopmarifiHux momis 3eMil Ta BHPILIEHHSA [THUTAHB CY4acHOl
reonesii B il B3a€MO3B’S3Ky 3 TEOMMHAMIKOW Ha OCHOBI JIOCTI/DKEHB pedepeHIIHHX CHCTEM KOOpAWHAT. Yci
AHATITHYHI BUPAKCHHS MMOKA3HUKIB KyTOBHWX CIIOTBOPEHB IIOZIAHO Y 3araTbHOMY BHITISL, SIKUM 3MATHUIl IIepenaTh
HenmiHiMHI 3aKkoHOMipHOCTI jmedopmariii. Meroavka aedopmariifinoro aHamizy ajanToOBaHa JO BUKOPHUCTAHHSA
BXIIHHMH TaHUMH pe3ynsTaTiB GNSS-MOHITOpHHTY KOOPAMHAT CTaHINN 3 ypaXyBaHHsM nedopmaitii cuctemu ITRS.

Kmouosi crosa: pimanosi maddeoMopdHi MHOTOBUAHM, METPUUHUM TeH30p TMpocTopy; AedopMarliiianii anamis;
wopeTKi obepratint 3emiti; redopvaitis CHCTEMH KOOP/IHIIAT.
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