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linponnuamiuni i eHeprorpaHcnopTHi MoJesli BUHUKJIM SIK MOTYTHi 3ac00u 1Jis1 101aT-
KOBOT'0 BHCBITJIEHHS CKJIQJHHUX HEJOKAJHLHUX MOBEAiHOK CYy4YaCHHX HANiBIPOBITHMKOBUX MPHU-
cTpoiB. OaHAK 3anPONOHOBaHi GOpMYTIOBAHHS PO3PI3HAIOTHCS 32 CKJIAHICTIO, 2 PO3B’ A3aHHS
LHUX PiBHAHb € HA0AraTo CKJIAJAHIIIKUM, Hi’K BiioMi piBHSIHHA mocTynoBoi audysii. B crarri Mmu
KOHIIETPYEMOCH HA OCHOBHHMX PiBHAHHAX, OOYMOBJIOIOTHCA TNPHUIOYUIeHHS i HaJa€Tbes
JeTajJbHMI Meperis] HAalBaXJIMBIINX cTaTei, sAKi 0y/11 onmy0/1iKoBaHi 32 JaHOK TEMOIO.

Hydrodynamic and energy-transport models have emerged as powerful means for
gaining additional insight into the complex non-local behavior encountered in state-of-the-art
semiconductor devices. However, several different formulations have been proposed which
vary considerably in complexity. Furthermore, the handling of these equations is far more
complicated than that of the robust and well studied drift-diffusion equations. In this paper we
concentrate on the basic equations and the simplifying assumptions used in their derivation
and give a detailed review of the most important papers published on this subject.

As the size of state-of-the-art devices is continually reduced, non-local behavior becomes a crit-
ical issue in the simulation of these structures. The well established drift-diffusion (DD) model
[1] which is still predominantly used by engineers around the world cannot cover these effects
as the electron gas is assumed to be in thermal equilibrium with the lattice temperature. In the
DD approach the local energy can be estimated via the homogeneous energy flux equation (e.g.,
(53) with V - (nS) and J; set to zero). However, for rapidly increasing electric fields the energy
lags behind the electric field because it takes the carriers some time to pick up energy from the
field. A consequence of the lag is that the maximum energy can be much smaller than predicted
by the homogeneous energy flux equation. Furthermore, this lag gives rise to an overshoot in the
carrier velocity because the mobility depends to first order on the energy and not on the electric
field. As the mobility i has not yet been reduced by the increased energy but the electric field is
already large, an overshoot in the velocity v = pl is observed until the carrier energy comes into
equilibrium with the electric field again. Thus, DD simulations predict the same velocity profile
as for slowly varying fields which can dramatically underestimate the carrier velocities. Similar
to the mobility many other physical processes are more accurately described by a local energy
model rather than a local electric field model. Therefore, the assumption of a fixed energy-field
relation can cause non physical results when used to predict, for example impact ionization. To
overcome these limitations of the DD model, extensions have been proposed which basically add

* Marepianu crarti npeacraBisnuck Ha Mikxnapoamii HTK CADSM'2001 i pekomeHoBaHi 10 APYKY y
BicHuky "Komm'totepHi cucteMu npoeKkTyBaHHs. Teopis 1 npakTuka”.
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an additional balance equation for the average carrier energy [2, 3]. Furthermore, an additional
driving term is added to the current relation which is proportional to the gradient of the car-
rier temperature. Several different formulations have been proposed which vary considerably in
complexity. Furthermore, these equations have been extended to handle non-homogeneous ma-
terials and non-parabolicity effects. In the following we review some of the basic assumptions
underlying these models.

2 Boltzmann’s Transport Equation

Transport equations used in semiconductor device simulation are normally derived from Boltz-
mann’s transport equation (BTE) which reads [4]

Ouf +u-Vief + 3+ Vief = 1] (n

for a general inhomogeneous material with arbitrary band structure [5]. For inclusion of quantum
effects equations based on the Wigner-Boltzmann equation have been considered [6]. The group
velocity u is

ul,r) = Vil 1) @)

which defines the inverse effective mass tensor

- 1 1
h(k,r) = % Qukr) ==
h i
where ® denotes the tensor product [5]. In the following we will only consider position-independent
masses but permit energy-dependent masses. Generalizations to position-dependent band struc-
tures will be given in the appropriate context. The force F exerted on the particles is generally

given as

Vi ® V€(k, r) 3)

F(k.r) = —ViE.p(r) — q(E(r) + u x B) — %&(k,r) (4)

and depends both on k and r. Omitting the influence of u x B (see [7] for a treatment of this
term) and assuming homogeneous materials, F' simplifies to

F(r) = —qE(r) (5)

The BTE is an equation in the seven-dimensional phase space which is prohibitive to solve for
engineering applications. Monte-Carlo (MC) simulations have been proven to give accurate
results but are restrictive time consuming. Furthermore, if the distribution of high-energetic
carriers 1s relevant, or if the carrier concentration is very low in specific regions of the device,
MC simulations tend to produce high variance in the results. Therefore, a common simplification
is to investigate only some moments of the distribution function, such as the carrier concentration
and the carrier temperature. We define the moments of the distribution function as

(®) = #/@f d’k (6)
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which reduce to their parabolic counterparts for & = 0. Expansion of the square root in (20)
yields terms in ascending powers of velocity which are not negligible when averaged. This
is problematic because these quantities are additional unknowns representing higher-order mo-
ments of the velocity distribution. Although (18) is an improvement over (17) it 1s nevertheless
a crude approximation for real band structures at higher energies.

4 Stratton’s Approach

One of the first derivations of moment equations was performed by Stratton [2]. First, the distri-
bution function is split into its even and odd parts as

flk.r) = folk,r) + fi(k.T) (21)

From f;(—k,r) = —fi(k,r) it follows that (f;) = 0. Assuming that the collision operator ' is
linear and invoking a microscopic relaxation time approximation for the collision operator

f—Jo
Clfl=— 22
l T(&€,1) 22)
the BTE can be split into two coupled equations. In particular, f; is related to f via
q
fo = =1(€.1) (uVefo - 2B Vi) (23)
The microscopic relaxation time is then expressed using a power law as
E N7
&) =1(—) 24
T(€) =To koTy (24)

which allows for an explicit integration over constant energy surfaces. When f; is assumed to be
a heated Maxwellian distribution, the following equation system is obtained

V-J=q(dn+ R) (25)
J = qunE + kgV(nuly) (26)
V.-§S= —§k33t(nTﬂ) +E.J- §anM (27)
2 2 TE
5 kG
S—_ (5 _ ) (pnkBTﬂE + EV(inn)) (28)
(26) 1s frequently written as
J=qu(nE+ %Tnvn n lfq—Bn(l +1,)VT,) (29)
with
T, dp  Odlnp
== = 30
Yn pw oI, olnT, (30)
which is commonly used as a fit parameter with values —0.5... — 1.0. For ¢, = —1.0, the
thermal diffusion term disappears. Under certain assumptions [2, 12] p = —4,. The problem

with expression (24) for 7 is that pmust be approximated by an average value to cover the relevant
scattering processes. However, this average depends on the doping profile and the applied field
and thus no unique value for p can be given.



22

5 Bletekjzer’s Approach

Bletekjer [3] derived conservation equations by taking the moments of the BTE using the weight
functions 1, fik, and £ without imposing any assumptions on the form of the distribution function.
These weight functions ¢ define the moments of zeroth, first, and second order. The resulting
moment equations can be written as follows [8]

on  +V-(nv) = nChy (31)
dy(np) +V-(nU)—nF =nC, (32)
d(nw) +V - (nS) —nv -F=nC; (33)

Note that these expressions are valid for arbitrary band structures, provided that the carrier mass
is position-independent. When F' is allowed to be position-dependent, additional force terms
appear in (31)-(33) [13]. The collision terms are usually modeled with a macroscopic relaxation
time approximation as

1 1
Cn=——(R-G)=—-U (34)
__P
Cp= - (35)
. _'w — Wy
Ce = - (36)

which introduces the relaxation times 7, and 7¢. A discussion on this approximation is given in
[14]. This equation set is not closed as it contains more unknowns than equations. Closure rela-
tions have to be found to express the equations in terms of the unknowns 7, v, and w. Due to the
strong scattering the temperature tensor is normally assumed to be isotropic and is approximated
by a scalar T}, as

Tow+ Ty + To
3

Traditionally, parabolic bands were assumed which gives the following closure relations for p,
fj', and w

TaTI= £ (37)

p=m'v (38)

U= %{u@u} = kgT i+ m'vev (39)
3 m*v?

w = EkBTn -+ ) (40)

Note that the random component of the velocity has zero average ({¢) = 0). With (38) one
obtains the following formulation for C,

mv v
Tp Tp H
For modeling purposes it is advantageous to lump m.* and 7, into one new parameter, the mobility

Jt. As signal frequencies are well below 1/(277,) A 102 Hz the time derivative in (32) can
safely be neglected.

(41)
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Furthermore, a suitable approximation for the energy flux density nS has to be found and differ-
ent approaches have been published. Bletekjaer used

nS = (w+kgTy)nv 4+ nQ (42)

and approximated the heat flux n(Q) by Fourier’s law as

in which the thermal conductivity is given by the Wiedemann-Franz law as
/b kg2
H(Tn) = (E - p) (E) quniy (44)

where p is a correction factor. As has been pointed out [8], this expression is problematic as (43)
only approximates the diffusive component of 7:4Q. For a uniform temperature VI,, = 0 and
thus Q@ = 0 which 1s not plausible. The convective component { o, must be included to obtain
physical results when the current flow is not negligible.

With these approximations (31)-(33) can be written in the usual variables as [15]

J- %v : (J ® %) = 1ksV(nTy) + qruE (46)
V- (nS) = —di(nw) + B+ J - n——= (47)

£
nS — —%(w + ke Tu)d — &(To)VT, (48)

to give the full hydrodynamic model (FHD) for parabolic band structures. This equation system
is similar to the Euler equations of gas dynamics with the addition of a heat conduction term
and the collision terms. It describes the propagation of electrons in a semiconductor device as
the flow of a compressible, charged fluid. This electron gas has a sound speed v, = /Ty, /m*,
and the electron flow may be either subsonic or supersonic. With T, = &7y, and T, = 300 K,
ve = /£ 1.3+ 107 em/s while for T, = 7T K, v, = /£ 6.6 - 10° cm /s [16].

In the case of supersonic flow, electron shock waves will in general develop inside the device
[16]. These shock waves occur at either short length scales or at low temperatures. As the equa-
tion system is hyperbolic in the supersonic regions, special hyperbolic methods have to be used
[16, 17, 18, 19]. Furthermore, the traditionally applied Scharfetter-Gummel [20] discretization
scheme and its extension to the energy-balance and energy-transport models [21, 22, 23, 24]
cannot be used for this type of equation. One approximation is to treat the convective term as a
perturbation by freezing its dependence on the state variables at each linearization step and using
the values from the last iteration [25]. However, this approach will degrade the convergence in
cases where the variation in space or time is important [26]. Thus, to derive a spatial discretiza-
tion, fluid dynamics methods known as upwinding are used [26]. Furthermore, the handling of
the boundary conditions becomes more difficult [19, 27].

When the convective term

Z—Pv : (J ® %) (49)
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is neglected, a parabolic equation system is obtained which only covers the subsonic flow regions.
This is a very common approximation in todays device simulators. Furthermore, the contribution
of the velocity to the carrier energy is frequently neglected

w ke, (50)
which then results in the following equation system
V.J=q(@n+T) (51)
J = pkgV(n1y) + qnuE (52)
V- (nS) = BkBat(nT J+E-J - 31;3 T"%} (53)
ns = SkBT“J — ’(T)VT, (54)

(51)-(54) form a typical three moment energy-transport (ET) model which has been closed using
Fourier’s law.

To overcome the difficulties associated with the Fourier law closure (43), the fourth moment of
the BTE has been taken into account [28] which gives

V - (nR)—n(wl + U) - F= nCpe (55)

where the time derivative has been ignored using a similar argument to (32). The collision term
in (55) can be modeled in analogy to (41) as

Cpg = —— (56)

which gives

3

(wI+U) v+ £2 (( i+0)- v(nl) - V(ult)) (57)

Now a closure relation for R has to be introduced, which can be, for example, obtained by
assuming a heated Maxwellian distribution which gives

f= 23721 (58)

Using closure (58) and the same approximations that led to the three moments ET model (51)-
(54), a more accurate expression for 128 is obtained from the fourth moment of the BTE

nS = —EékBTnJ - Eﬁ (k_B) 2%ﬂTnVTn (59)

r2q pr2Nq

which should be used to replace (54) to give a four moments ET model. Comparing (59) with
(54) reveals that a consistent three moment ET model can be obtained with y.g/p = 1 and p = 0.
However, p15/p strongly depends on the carrier temperature and shows a pronounced hysteresis
as shown in Fig. 1 where the points B and D are from the rising and decreasing temperature
regions, respectively The energy relaxation time and the momentum relaxation time are shown
in Fig. 2 and both are not single valued functions of the temperature.
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Figure 1: Ratio of pi5 and pi as a function ofthe ~ Figure 2: Relaxation times as a function of the
carrier temperature inside the n™-n-n" test-  carrier temperature inside the n*-n-n* test-
structure obtained from MC simulations. structure obtained from MC simulations.

6 Comparison

One of the extensively discussed differences between Bletekjar’s (A1) and Stratton’s (A2) ap-
proach is that in A2 the mobility stands inside the gradient whereas in A1 it stands infront of the
gradient in the current relation

Blotekjer (Al): 1 V(nTy)
Stratton (A2):  VinpsTy)

This issue was addressed by Stratton himself [29] and by Landsberg [30, 31]. It is important to
note, that although this parameter is called mobility in both approaches, their definition differs
significantly. Tang and Gan [32] compared both approaches and found that both formulations are
justified, provided that the respective mobilities are modeled accordingly. For bulk simulations
the mobilities are equal and can be properly modeled using conventional energy-dependent ex-
pressions [33, 34]. However, in inhomogeneous samples where the electric field varies rapidly,
the mobilities are no longer single-valued functions of the average carrier energy. The advantage
of the p; formulation lies in the fact, that for increasing values of the electric field, it can be
roughly approximated by its bulk value whereas s 1s always different. Thus z¢; can be expected
to be more suitable because in most commercial simulators the mobility is modeled as a function
of the carrier energy only. By expressing Cp empirically as

Cp=C;+AV-U (60)

where Cy, is the homogeneous component and Ap a dimensionless transport coefficient, Tang ef
al. [35] showed that A2 can be obtained from Al with A, = —24,. Other comparisons of the two
approaches can be found in [12, 32, 36, 37, 38].
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7 Conclusions

Many different hydrodynamic and energy-transport models have been published so far. They rely
on either Stratton’s or Bletekjzr’s approach to find a suitable set of balance and flux equations.
In Stratton’s approach there is no need to invoke Fourier’s law to close the equation system due
to the relationship (23). Bletekjar used only three moments and closed the equation system by
approximating the heat flux with Fourier’s law. This closure has frequently been replaced by
equations obtained from the fourth moment of the BTE.

Uncertainties are introduced by the approximation of the collision terms which are modeled via
relaxation times and by the derivation of closure relations. Expression for these are normally
extracted from homogeneous MC simulations. As has been clearly shown, homogeneous MC
simulation data are not sufficient for the simulation of state-of-the-art devices as neither the re-
lation times nor the closure relations are single-valued functions of the average energy. This
used to be one of the advantages of the macroscopic transport models over the MC method be-
cause measured p(E) characteristics could be directly incorporated into the simulation which
is not possible for the microscopic approach taken in the MC method. Unfortunately, data for
inhomogeneous situations are difficult to extract from measurements due to the complex interac-
tion between the various parameters. Therefore, MC simulations of nt-n-n' test-structure were
performed to extract the desired data.

Another problem is directly related to the MC simulations itself. As has been frequently re-
ported, the results obtained by available MC codes differ significantly [39]. Especially impurity
scattering is difficult to model [40] and any error in the mobility influences the simulated energy
relaxation times were large differences were found in the published data.
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