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The paper deals with numerical computation of effective resistance and inductance of
profile conductors carrying harmonic currents for a wide range of frequencies. Investigated is
particularly the influence of varying profiles of the conductors for the same area of their
cross-sections. The theoretical analysis is illustrated on several examples whose results are
discussed.

Introduction

The resistance and inductance of profile conductors belong to their most important parameters that
substantially affect their transmission abilities. Both these quantities are functions of frequency.
Generally, with higher frequency their resistance grows while the inductance decreases. For frequencies to
approximately hundreds kHz the distribution of the current density is the less uniform the more
complicated is the circumference of the conductor (its highest values can be found at various corners while
values near smooth parts are usually much lower). For even higher frequencies (starting from MHz) the
depth of penetration becomes very small so that the influence of the shape of the cross-section is
practically negligible. The current is now transferred practically along its perimeter and its density
depends almost only on its length.

This knowledge is of fundamental importance for design of conductors for high frequency currents.
Required is here the minimal possible growth of resistance at the lowest consumption of material. At the
first sight, of course, it is very thin band conductors that well satisfy these requirements. But mechanical
properties of such conductors are rather poor and, moreover, they would take a lot of place in /f devices. It
is, therefore, necessary to do a compromise consisting in selection of such a profile of the conductor that
secures better mechanical properties at the expense of acceptable deterioration of the mentioned circuit
parameters and increase of the production costs (technology of production of these conductors is relatively
complicated and based on cold drawing through diamond dies in which precise apertures of corresponding
profiles are performed by ultrasound).

The paper deals with computation of the frequency-dependent resistance and inductance of several
types of profile conductors and their comparison with analogous quantities of a cylindrical conductor with
the same area of its cross-section.

Formulation of the technical problem

Determined are the frequency-dependent effective resistance and inductance of the profile
conductors depicted in Fig. 1 (a - cross-type conductor, b - star-type conductor and ¢ - band-type
conductor) for several versions differing from each other by geometrical sizes. The results are compared
with analogous values for the cylindrical conductor d. The area of cross-sections of all conductors is the

same and its value S, = 107° m%

Mathematical model of the problem
Let us consider a long conductor carrying harmonic current of amplitude / and frequency f . The
conductor, whose material is supposed uniform, isotropic and linear (with constant magnetic permeability
Lo and electrical conductivity ¥ ), has an arbitrary cross-section of area S,. Its basic arrangement is

depicted in Fig. 2.
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Fig. 1. Considered types of conductors: a — cross-type conductor; b — star-type conductor;
¢ — band-type conductor; d — cylindrical conductor

conductor

Fig. 2. General investigated arrangement

The definition area of the problem (in 2D, see Fig. 2) has to be suggested with respect to disability
of determining the boundary condition along the circumference I'_ of the conductor. That is why the area

of the conductor is surrounded by sufficiently large air cylinder of cross-section £, with radius R, along

whose perimeter I, the field distribution may be estimated with relatively good accuracy.
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As all electromagnetic quantities are supposed harmonic, they may be expressed in terms of their
phasors. Each of the phasors of the vector potential 4 and current density J has only one nonzero

component in direction z: A4_ (x, y) and J_ (x, y) , respectively. The phasor of the total current density

J . in the conductor consists of two terms

J= Tyt 0
where J., is the potential component given as [ /S, and J . the eddy current component. Within the
conductor (area £2,) distribution of the phasor A_ of the vector potential is described by the Helmholtz

equation [1]

Ad, —j-oypgd, =—pyJ,, 2)
while in the air (area €2, ) by the Laplace equation
A4 =0. 3)
The phasor of the eddy current density J . within the conductor is then expressed as
Je.=—jwyd.. )

The boundary conditions are expressed as follows:
e Boundary I',: A, =const.

e Boundary I, : continuity of both A4_ and its normal derivatives 0A_/0on .

The unknown value of 4_ along the boundary I', follows from the indirect condition
JdS=1. 5
J Lds=1 5)
The knowledge of distribution of J_ represents the starting point for finding the resistance and

inductance of the conductor.

e The effective resistance R;ff per unit length that may be calculated from distribution of the

specific Joule losses w; given as

J_-J

WJ ==2 == (6)
14
The total Joule losses per unit length AP, are
AP =] w-dS (7
and

AP, 1

ar=—a=—x[ w-ds. (8)
VIV

o The effective inductance L., per unit length that can be calculated from the total magnetic field

energy per unit length

, 1 2
W :mfg |B|"dS, Q=Q, 0%, 9)
which gives, after some rearrangements
2 2
AESEEIIE
2, X y
eff — ;n = 2 : (10)
i ho |1
The resultant effective impedance Zéff per unit length is finally given by formula
Loy = Regp + - 0Ly . (11)
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Computation of the described mathematical model was realised by combination of the FEM-based
professional code QuickField 5 [2] and several single-purpose user procedures developed and written by
the authors in Matlab 6.5. The results were thoroughly tested with respect to their geometrical
convergence discussed later on.

Examples of computation
Investigated was dependence of the effective impedance per unit length Zéff = R;ff + j-a)L'eff on

frequency f within the range 50 Hz — 50 GHz for copper (¥ = 5.7-107 S/m) conductors of

o type a (Fig. 1) in versions I, Il and 111,

e type b (Fig. 1) in versions | and II,

o type ¢ (Fig. 1) in versions I, Il and II1.

The results are compared with the similar dependence for a reference copper conductor of circular
cross-section (type d, Fig. 1).

Conductor of type a

Fig. 3 shows the complete definition area of the problem (which represents one fourth of the real

arrangement).

Fig. 3. Definition area of the problem

The letter R in Fig. 3 denotes radius of the artificial boundary I', (its value being chosen in such a

manner that energy of the magnetic field does not change more than by 5% when R increases by 0.01m).
Fig. 4 shows the convergence of results as a function of the number of nodes in the mesh for
frequency f =500kHz. The vertical axis shows differences of the magnetic energy in percents. It is

obvious that the convergence rate depends on the shape of the profile. Let us define accuracy

W= IOO(WN2 -Wy, )/ Wy, where W, is total magnetic energy calculated on a grid with N, nodes and

WN2 on a grid with N, nodes. While in case of the circular conductor the accuracy 5% is reached for

about 100000 nodes, the same accuracy for the cross-type conductor, version III (Fig.1) is reached only on
a grid five times denser (about 500000 nodes). This is closely associated with distribution of magnetic
field over particular cross-sections of different conductors.

Fig. 5.1 depicts the frequency-dependent ratio of the effective resistance Réff per unit length of the

conductor of type a for all three versions and direct-current resistance R, of the circular conductor of the

same cross-section. Because the differences between particular curves are not too much observable, Fig.
5.2 shows their zoom for higher frequencies. It is apparent that the dependence of the effective resistance
of the conductor on its profile is more substantial only at high frequencies, in this case about 10'° Hz and
more. Only now the currents are concentrated in such a thin surface layer that the resistance depends
practically only on the perimeter of the conductor.

The same dependencies have been calculated for two versions of the conductor of type b. Fig. 7
depicts the convergence curves for the same parameters as in Fig. 4. Even when the convergence rate is
again considerably dependent on the shape of the profile, in comparison with conductor of type a (see
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Fig. 4) is substantially higher. The reason is that the perimeter of conductor b is created by longer direct
parts, which is much more favorable from the viewpoint of the mesh triangulation.
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Fig. 4. Geometrical convergence of results for the conductor of type a for firequency f =500 kHz
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Fig. 5. Ratio of R;ff / R(v) versus frequency for the conductor of type a (part 5.1)
and its zoom for higher frequencies (part 5.2)
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Fig. 6. Ratio of L'eff / LVO versus frequency for the conductor of type a
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Fig. 6 shows the frequency-dependenct ratio of the total inductance L'eff per unit length of the
conductor of type a and circular conductor of the same cross-section related to direct-current inductance
L'O . At the first sight, some attributes of these dependencies are similar as in case of the resistance. But

now the energy of magnetic field is calculated both within the conductor and air (compare equations (9)
and (10)). And from certain frequencies the energy accumulated in the conductor becomes negligible with

respect to the energy in the air. That is why in the interval <104 —106> Hz the magnetic energy in the
conductors decreases, practically to zero, which is clearly observable in the figure.
Conductor of type b
Fig. 8.1 depicts the frequency-dependent ratio of the effective resistance R(;ff per unit length of the

conductor of type b for all two versions and direct-current resistance R(') of the circular conductor of the

same cross-section. As the particular curves are almost identical, Fig. 8.2 contains their zoomed part, again
for frequencies exceeding 1 MHz. Despite strongly expressed dependence, however, its growth is now
substantially slower than in the case of conductor of type a (see Fig. 5.1 and 5.2). While for frequency

=5 10" Hz the ratio Réff / R(') for the conductor of circular profile is 9-10%, for the conductor of type

a (version II) the same ratio is 8.1-10% while for the conductor of type b (version II) 3.8:10% This effect is
again given by the fact that the current is transferred only in very thin surface layer whose area depends
practically only on its perimeter. And its value is in the case of conductor b much higher.
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Fig. 7. Geometrical convergence of results for the conductor of type b for frequency f =500 kHz
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Fig. 8. Ratio of R;:ﬁo / R(v) versus frequency for the conductor of type b (part 8.1)
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Fig. 9. Ratio of L'eff / LVO versus frequency for the conductor of type b

Fig. 9 shows the frequency dependence of the total inductance analogously as in Fig. 6. The
situation is similar to that in Fig. 6, but with growing frequency the ratio L'eff / LVO decreases much faster.

Conductor of type ¢
Convergence of solution for the conductor of type ¢ follows from Fig. 10. Even in this case the
necessary number of nodes exceeds 100000.
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Fig. 10. Geometrical convergence of results for the conductor of type c for frequency [ =500 kHz

Fig. 11 contains the frequency-dependent ratio of the effective resistance Réﬁo per unit length of the

conductor of type ¢ for all three versions and direct-current resistance R, of the circular conductor of the

same cross-section. Here the differences between the parameters of the circular conductor and band-type
conductors are relatively high, as could be expected in advance. Fig. 12 finally shows the frequency

dependence of the total inductance for conductor of type c.
The knowledge following from Figs. 10—12 is in accordance with results obtained for conductors of
type a and b. On the other hand, due to long perimeter the resistances are much lower in this case. For

example, the value of R(;ff / R(') for frequency f = 5-10" Hz is equal 1.4-10%, which is more than two

times lower than for conductors of type b.
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Fig. 11. Ratio of R / Ry versus frequency for the conductor of type ¢
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Fig. 12. Ratio of L / Ly versus frequency for the conductor of type ¢

Conclusion

Numerical computation of the task by differential technique requires a relatively long time because
of necessity to generate a mesh with an adequate density, consisting of more than 100000 elements (the
conductor itself about 20000 elements, ambient air about 80000 elements). Otherwise, it would not be
possible to guarantee the convergence of results.

For frequencies up to about 1 MHz, the values of the circuit parameters of the profile conductors are
comparable with the same parameters of the reference conductor with circular cross-section. For higher
frequencies, however, these parameters decrease, which is particularly caused by smaller values of the
resistance.

It can generally be said that the results obtained provide a hint how to choose a profile of the
conductor that can satisfy requirements concerning its circuit parameters at high frequencies. Of course,
design of a conductor of such a profile has to be in accordance with technological possibilities and must
also satisfy viewpoints of both production and exploitation in the corresponding electronical device.

Although the differential approach is reliable and widely used for computations of this kind,
sometimes it may suffer from a serious drawback consisting in considering the air domain £, . Its
incorporation into the definition area leads to a steep growth of elements in the discretization mesh,
particularly in case of irregular cross-section of the conductor (with no condition of symmetry). Moreover,
the situation deteriorates with the growing frequency, which requires very fine discretization of the
conductor itself, especially in its surface layers.
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That is why we started with application of integral methods for direct determination of distribution
of phasor J_ of current density over the area of the profile that is given by solution of the second-kind

Fredholm integral equation [3]. The circuit parameters are then calculated in accordance with formulas (6)
— (11). Computations are fully realized by own program written in Borland Delphi. Of course, despite a
mesh with much less elements (in comparison with meshes used in the differential approach) the
computations also take a lot of time (of the order of minutes) because of necessity to work with dense
matrices. Promising seems to be here application of higher-order integral methods based on the variational
approach with using the Galerkin schemes, that is now being developed.
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