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HaBeneHo pe3yabTaTH TeOPETHYHOI0 BU3HAYEHHS €MHOCTI /JJIsl CHCTeMH 3
NPSIMOKYTHUMH MPOBITHIMH KAHAJIAMH B IUIIBKOBUX MikpocxeMax. OTpuMaHi pe3yJib-
TATH € NPOJOBKEHHSIM NONeEPeIHIX A0CIiAKeHb. Y NMepuIoMy BHIIAAKY PO3IIAIAI0ThCS
ABa napaJjejbHi NPOBIAHI KAHAJIN 3 BU3HAYEHOI0 IIMPHHOIO i JOBKMHOIO, SIKi po3Mi-
1eHi HA oHOMY Oowi JieJIeKTPUYHOI MiAKJIAAKN HEBU3HAYEHUX Po3MipiB. B inmomy
BHUNAJIKY i KAHAJIU BIAXWIATHCS OJMH Bill OIHOr0 HA KYyT 20.. BU3HaYeHHs €eMHOCTI
M 000X BHNAAKIB 0a3yeThbCcsi Ha PO3B’SI3aHHI TPUBUMIPHOI KpaiioBoi 3aaadyi.
Enexkrpununuii norenuiana nogaerbes y ¢popmi interpaniiBs ®yp’e, siki 3a10BOJIbHAIOTH
piBHsinHg Jlannaca. Buxoasiuu 3 uboro, YucJ0OBUMHM MeTOAAMM PO3B’ A3Y€THCH PiBHSIH-

HA PO3MOALTY eJIeKTPUYHOro 3apsiay. Ha 1iif ocHOBI po3paxoBy€ThCsl BeJIMYUHA €EMHOCTI.

Results of theoretical capacitance determination for the rectangular conductive
path systems in film microcircuit are presented in this paper. It is a continuation of
earlier investigations. In the first order two parallel conductive paths with deter mined
width and length located on the same side of dielectric microcircuit substrate of infinite
dimensions is here considered. Next these paths are deflected in relation to each other
at an 2o-angle The capacitance determination of both systemsis based on the solution
of three-dimensional boundary problem. Electrical potential is presented in form of
Fourier integrals, satisfying the Laplace’'s equation. Resulting from here the equation
system of electric charge distribution has next been solved by application of numerical
method. On this basis the capacitance value has been calculated.

1. INTRODUCTION

The design of film microcircuits differs radically in scope and procedure from conventional
circuit design techniques. Coupling effects become here sufficiently significant. Therefore, taking
into consideration the criteria of el ectromagnetic compatibility, reliability or tolerance aspects, an
identification and analysis of interelement influences between particular elements of the micro-
circuits are very important. From this point of view knowledge about parasitic or usefully coupling
capacitance among various conductors is also necessary.

Capacitive couplings appear in the all thin-film thick-film structures and integrated circuits
and generally may have deleterious effect on the over-all circuit performance by introducing stray
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capacitance between various paths. It is necessary to have the means for estimation these parasitic
capacities in order to take into account their effect on the complete circuit function [1]. From the
other side, for example in capacitive film sensor systems where capacitive couplings perform a
useful function, the knowledge about capacitance values can be aso very important.

The paper deals with a range of low and medium frequency, where it is possible to treat the
particular fragments of conductive layers as geometrical separate elements. In higher frequency
range, the capacitive couplings should be analysed together with inductive couplings as elements
of distributed-parameter system.

2. COUPLING CAPACITY IN SYSTEM OF PARALLEL CONDUCTING PATHS
2.1. Calculation method

The Fourier integral method for determination of parasitic capacities in parallel conducting
path system is here applied. In this solution method — simplified to two-dimensional problem —has
been assumed:

e |ength, width and thickness of substrate are infinitely great;

e two parallel conductive paths of equal width and identical length are located on the same
side of dielectric microcircuit substrate (Fig. 1),

e thickness of parallel conducting pathsis negligibly small,
e dielectric permeability of substrate amountsto &, = &, and of environment &; = &y-€y;
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Fig. 1. Configuration of conductive paths in plane microcircuit:
a—general view, b—x—zplane

Electrical potential fulfils Laplace's equation V2¢ = 0. The expected solution, applying the
method of separation of variables, can be presented in the form of Fourier integrals[2,3]:

J‘J.W(a,ﬁ)-e_”-sin(ocx)'cos(ﬁy)dadﬁ for z20
00
1

]Z]ZW(OC,ﬁ}eHZ-Sin(ax)~cos(ﬁy)dadﬁ for z<0
00

with r* = of + % From the boundary conditions results that
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¢ step-change of normal component of electric induction D, = ¢E, on the region of con-
ducting pathsis equal:

q(x,y) for a<x<b —-c<y<c

glEn(x)y)0+)_82En(x1y:0_):{0 fOl” Y [Cl b] Ve [—C C] ’ (2)
whence the coefficient W(o,§) isreceived as.
4 b c
W(a,ﬁ)_—” -q(s,t)-sin(as)-cos( Bt )dsdt, 3)

nl(e +&,)",
where g(s;t) isthe electrical charge density.

¢ the electrical potential @(x,y,0) applied to conducting paths is equal ¢=1 and ¢=-
respectively (Fig. 1,b). Hence:

4 oo | b c
_7r2(81+82)6[6[ ;[_J;

The unknown distribution of charge density can be determined as:

q(s,t)sin(oes)cos(Bt)dsdt |sin(oex)cos(By)dadB =1. (4)

N |-

b ¢ 2
J.J.q(s,t)-F’(S,x,t,y)det:M, (%
where:
J-J-cos[(x(s x)] cos[ B(t— y)]dadﬁ+lJ-J-cos[(x(s x)]- cos[ﬁ(t+y)]dom]ﬁ+
ﬁZ 4 \/(X +ﬁ (6)
__J’J’cos[a(s+x)]-cos[[3(t y)]docdﬁ JJCOS[OC(S_HC)] cos[ﬁ(t+y)]dadﬁ
\/0(2+ﬁ2 00 \/(X +ﬂ2
Using theidentity [4]:
T T cos(AX )-cos(BY ) V3 1
dAdB == ——e (7)
'(['([ VA% +B? 2 Jx*+1?
the function F’ (s, X, t, y) can be written as
1 N 1
oo W52 4130 N(s=x) w143 -
8 1 1 '

| st ey e vy |
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whence

b ¢
Ijq(s,t)-F(s,x,t,y)dsdt:27r(81+82) by FZE-F'. 9)
T

Capacity value will be calculated as:

c =i=l-ﬁq(xy)dxdy (10)
M7 a9 "2 ’ '

a —c¢

2.2. Numerical solution of chargedistribution

The integral equation (9) can be solved with use of numerical calculation method. With this
end in view the discretisation of equation has been applied (Fig. 2). It has been here assumed that
equation of electrical charge distribution is fulfilled in points:

(6, y) fori=1,.. NHandj=1,.. ,NV,wherex = a+ (i—0,5)-As, y;= c+ (j —0,5)-At and that
Okn = CONst. for S, <S <Speq, tk < t <tyqs.
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Fig. 2. Partition of conducting layer: s,=a+ (n—1)-As;n=1,.., NH+1;
As= (b—a)/NH, ty=c+ (k=2)-At; k=1,..,NV+1; At = (d—C)/NV

Taking into consideration the above assumptions and denotations the equation (9) can be
written as:

b d NV NH Tl Spyl
jJ'q(s,z)-F(s,x,z,y)dsdtzz > den j J.F(s,t,xi,yj)dsdt=27t(£1+82). (11)
a c k=1 n=1 Sy
Tk+1 Sn4
Double integral I IF(S,t,xi,yj)det consisting of 4 terms can be solved analyticaly.
e Sp

The result of integration of the expression (8) is:
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where: Wli,=Sus1—X%=4s(n—i+0,5), W2 =5-%=A4s(n—-i-0,5),
W3in=Sw1tX=2a+As(n+i-05), Whin=s+ x=2a+ As(n+i-15),
A =ter—Y, = A-(k—j +0,5),  z2x=tc—Yy; = At(k—j—0,5),
Bik=taty=2c+At(k+]-05), Z4j=tc+y=2c+At(k+]-15).

The numerical calculation of charge density gxn resolves itself into the solution of the
algebraical equation system (11).

Denoting:
Tkl Spt -
j F(sit,x;,y; )dsdt=D]'"" = 4,,,,
Iy Sn

where p=(j —1)-NH +i and r = (k—1)-NH + n, the equation system (11) can be presented in
matrix form:
AY =B (13)
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where

4, A NH-NY

A=| : Ay :

Avg.nvy 0 ANH.NVNH-NV

Y — vector of the unknown charge density,
Y=[Q1 oYy QNH-NV]J
and
BT:[B] Bm BN'H,NV] with Bm=277:(€1+82)

Therefore, the capacitance Cy between conducting pathsis given by

NV-NH
Cy =0.5-As-At- Y q,,. (14)

m=1
2.3. Calculation results

Calculations of electrical charge distribution have been realised using MathCad program,
and the exemplary result isshownin Fig. 3.
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Fig. 3. Numerical calculated distribution of electrical charge density

On this basis the capacity values (equation (14)) for two parallel conducting paths of
determined width and length have been estimated. The computations were made for following
data: distance between paths equal 0,4 mm, the width of two paths equal 0.6 mm and their length —
variable, dielectric permeability &y =8,85-10" F/m, dielectric constant of the air & = 1 and of
ceramic substrate &, = 9,08.

The results of calculations on relation (14) have been compared with the capacity values
computed by the assumption that the conducting layers are of infinite length and the capacitance
between these conductorsis determined per unit length [5] (Fig. 4).

This comparison shows that the values of capacitance obtained on the base of equation (14),
especialy for small length of conducting paths are considerably greater. It results from taking into

account the surface density of electrical charge, which becomes infinitely great on the edges
of paths.
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Fig. 4. Variations of capacity Cy,: 1 — calculated in according to relation (14;
2— onthebasisof [5]; L —length of conducting paths

3. CAPACITANCE CALCULATION IN DEFLECTED CONDUCTING
PATH SYSTEM

An analysed problem deals with the system of two rectangular, symmetrically deflected for each
other conducting paths (Fig. 5).

DL

: J

—~

Fig. 5. Configuration of deflected path systemin plane microcircuit:
DL —length, SZ —width of each path

The solution of capacitance determination between these paths consists here of three parts.

e in the first one the Fourier integral method for determination of electrica charge
distribution in parallel conducting path system (described above in p.2.1) is applied,

¢ in the second step the primary coordinate system is rotated at an o-angle. As aresult of this
transformation the modified integral equation of charge distribution is obtained.

e the last one consists in the numerical solution of unknown charge distribution and finally,
the capacitance value is cal cul ated.

3.1. Rotation of coordinate system
To simplify the solution way, the coordinate system was rotated —by taking into account
symmetry of path system —at an o-angle (Fig.3). Relations between primary (s, t) and new (u, v)
coordinates amount to:
s(u,v) = u-cos(a) + v-sin(e), and t(u,v) = -u-sin(e) + v-€os(c). (15)
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A consequence of coordinate transformation is the conversion of variables in double integral
according to formula[5]:

J'j f(s,t, )dsdt = J'j F(s(w,v),t(u,v))-|J (u,v )|dudv (16)
Q A

where Q and A are the closed areas in planes (st) and (u,v) respectively, and Jacobian J(u,v) is
received as

a o
|J|= aa_btl g =c0s2(06)+sin2(06)=1.
ou v
Hence, the distribution of charge density is equal
”q[s(u,v),t(u,v)] CF[s(uv),t(u,v)] dudv="2m(e, +&,). (17)

A
3.2. Numerical solution of chargedistribution

The integral equation (17) can be solved with use of numerical calculation method, similarly
asinp. 2.2. The discretisation of this equation has been applied (Fig. 3).

Fig. 6. Partition of conducting layer: NH, NV — numbers of width and length partition
up=a+ (n-1)-Au;n=1,..,NH+1, ww=c+ (k- 1)-Av; k=1,..,NV+1;
Au= SZ/NH, Av = DL/NV,

Besides, it was here assumed that equation of electrical charge distribution is fulfilled in points (n;

,§):fori=1,..,NH and j=1,.., NV, where ;= a+ (i —0,5)-Au; & = ¢+ (j —0,5)-Av and

that gxn = const. for Uy <U <Upe1, Vk < V <Vie1.

As acommon point for both coordinate systems there is accepted the point A with coordinates:
A(S, 1) 2 s, taand AU, V): 2 a= satos(a) - tasin(a), ¢ = sasin(o) + tacos(c).

Taking into consideration the above assumptions and denotations the equation (17) can be

written as:
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NV NH Vier1 Unyl
[[a(wv) Fauvn, & paudv=3 > qp, | [F(uvn, &) )dudv=2m(e, +e,).  (18)
A k=1 n=1 -
The subintegral function F(u, v, 1, &) isaresult of variable conversion of function F(s, t, X, y).
Vi+1 Uns1
Double integral I IF(u,v,ni ,§j)dudv consists also of 4 terms S1—S4, and each of them
Vk Up
can be transformed according to formula (16).
Thefirst one, by x = nicos(e) +&sin(e) and y; = -nisin(e) + & cos(e), isequa

k41 Syl Vil Ungl
o I I dsdt B |J(u,v)|dudv

i s—x 2=y ) [suv)=x(E )]+ [1wv) =y (0.6 )]

Vi+1 Un+1 dudv
v ou, \/(u_nj)z +(V_§j)2
Anaogicaly
141 Spal dsdt Vi+1 Unt dudv

s2= | = :
W \/(s—xi)2+(t+yj)2 _— \/(u—D,-,j)2+(v+Ei,j)2

[/(+l Sp+1 V41 Un+1
3= J- J- dsdt _ dudv

) 2 2 > =
e sy \/(s+x,-) +(t=y; )" ou, \/(”+Di,j) +(v-E; ;)

i1 Sns1 Vi+1 Una
dsdt dudv
A= J' -

Goa VXD HERYD? 0 G uEm)2 (v HE)?

where Djj = n;cos (20) + &sin(20) and Ej; = & cos (2a) — nisin(2c). All these integrals can be
solved analytically.

The numerical calculation of charge density gk, resolves itself into the solution of the algebraical
equation system (18) identically asin p.2.2, where

Vi+l Untl
&y,
Ay, =G0 = | [Futvn & )dudy,
Vk Un
and
NV-NH
Cyr =0.5-Au-Av- Y q,,. (18)

m=1

3. CALCULATION RESULTS

Calculations of electrical charge distribution have been realised using MathCad program. On this
basis the capacity values (equation (18)) for two non-parallel conducting paths of determined
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width and length as a function of a-angle have been estimated. The exemplary computations (Fig.
4) were made for following data: distance of unchangeable point A to y-axe equal 0.2 mm, the
width and length of two paths equal 0,5 mm, dielectric permeabilitye, = 8,510 F/m, dielectric
constant of the air €, = 1 and of ceramic substrate &, = 9,08.

A

a 7]

Fig. 7. Capacity as a function of o-angle: a — path configuration,
b — capacitance value

4. CONCLUSIONS

The obtained results of presented solution method of capacity calculation confirm the nature of
capacity changes conditioned by geometrical parameter of layers and the usefulness of this method
for determining of capacity values especially for layers of small dimensions.
From the waveform of the curve in Fig. 7,b it can be concluded about the correctness of the
elaborated calculation method. For the exemplary configuration of the square conducting paths the
capacitance value both for angle o and 90 — & is the same. For o =0, the result is identical with
result for parallel conducting path system (p.2)
The experimental verification — in case of thick-film circuits—requires to take into consideration
the finite thickness of ceramic substrate (it is a subject of further studies) and applying of a high
accuracy measuring equipment.

The Fourier's integral equation approach, with the help of effective computers, enables to
treat rather complex and finite geometric configurations of conducting paths that are useful in the
design of modern film circuits.
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