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Results of theoretical capacitance determination for the rectangular conductive

path systems in film microcircuit are presented in this paper. It is a continuation of

earlier investigations. In the first order two parallel conductive paths with determined

width and length located on the same side of dielectric microcircuit substrate of infinite

dimensions is here considered. Next these paths are deflected in relation to each other

at an 2α-angle The capacitance determination of both systems is based on the solution

of three-dimensional boundary problem. Electrical potential is presented in form of

Fourier integrals, satisfying the Laplace’s equation. Resulting from here the equation

system of electric charge distribution has next been solved by application of numerical

method. On this basis the capacitance value has been calculated.

1. INTRODUCTION

The design of film microcircuits differs radically in scope and procedure from conventional

circuit design techniques. Coupling effects become here sufficiently significant. Therefore, taking

into consideration the criteria of electromagnetic compatibility, reliability or tolerance aspects, an

identification and analysis of interelement influences between particular elements of the micro-

circuits are very important. From this point of view knowledge about parasitic or usefully coupling

capacitance among various conductors is also necessary.

Capacitive couplings appear in the all thin-film thick-film structures and integrated circuits

and generally may have deleterious effect on the over-all circuit performance by introducing stray
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capacitance between various paths. It is necessary to have the means for estimation these parasitic

capacities in order to take into account their effect on the complete circuit function [1]. From the

other side, for example in capacitive film sensor systems where capacitive couplings perform a

useful function, the knowledge about capacitance values can be also very important.

The paper deals with a range of low and medium frequency, where it is possible to treat the

particular fragments of conductive layers as geometrical separate elements. In higher frequency

range, the capacitive couplings should be analysed together with inductive couplings as elements

of distributed-parameter system.

2. COUPLING CAPACITY IN SYSTEM OF PARALLEL CONDUCTING PATHS

2.1. Calculation method

The Fourier integral method for determination of parasitic capacities in parallel conducting

path system is here applied. In this solution method – simplified to two-dimensional problem –has

been assumed:

• length, width and thickness of substrate are infinitely great;

• two parallel conductive paths of equal width and identical length are located on the same

side of dielectric microcircuit substrate (Fig. 1),

• thickness of parallel conducting paths is negligibly small,

• dielectric permeability of substrate amounts to ε2 = ε0ε2r  and of environment ε1 = ε0⋅ε1r   
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Fig. 1. Configuration of conductive paths in plane microcircuit:
 a – general view, b – x – z plane

Electrical potential fulfils Laplace’s equation ∇2ϕ = 0. The expected solution, applying the

method of separation of variables, can be presented in the form of Fourier integrals [2,3]:
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with r2 = α2 + β2. From the boundary conditions results that
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♦ step-change of normal component of electric induction Dn = εEn on the region of con-

ducting paths is equal:
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whence the coefficient W(α,β) is received as:
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where q(s,t) is the electrical charge density.

♦ the electrical potential ϕ(x,y,0) applied to conducting paths is equal ϕ = 1 and ϕ = -1,

respectively (Fig. 1,b). Hence:
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The unknown distribution of charge density can be determined as:
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Using the identity [4]:
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the function F’(s, x, t, y) can be written as:
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whence
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Capacity value will be calculated as:
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2.2. Numerical solution of charge distribution

The integral equation (9) can be solved with use of numerical calculation method. With this

end in view the discretisation of equation has been applied (Fig. 2). It has been here assumed that

equation of electrical charge distribution is fulfilled in points:

(xi, yj) for i = 1, . . ,NH and j = 1, . . ,NV, where xi = a + (i – 0,5)⋅∆s; yj = c + (j – 0,5)⋅∆t and that

qk,n = const. for sn <s <sn+1, tk < t <tk+1.

∆s
sns1

b
t1

yj

y1

c

d

∆t

a
xix1

q1,1

qk,n

sNH+1

 tNV+1

Fig. 2. Partition of conducting layer: sn = a + (n – 1)⋅∆s; n = 1, . . , NH+1;

∆s = (b – a)/NH,  tk = c + (k – 1)⋅∆t; k = 1, . ., NV+1; ∆t = (d – c)/NV

Taking into consideration the above assumptions and denotations the equation (9) can be

written as:
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The result of integration of the expression (8) is:

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua



91

+
++

++
⋅−

++

++
⋅−

+
++

++
⋅−

++

++
⋅−

+
++

++
⋅−

++

++
⋅−

+
++

++
⋅−

++

++
⋅−

+
++

++
⋅+

++

++
⋅+

+
++

++
⋅+

++

++
⋅+

+
++

++
⋅+

++

++
⋅+

+
++

++
⋅+

++

++
⋅=

=
−+−

∫ ∫
+ +

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

���

���

�

���

���

�

���

���

�

���

���

�

���

���

�

���

���

�

���

���

�

���

���

�

���

���

�

���

���

�

���

���

�

���

���

�

���

���

�

���

���

�

���

���

�

���

���

�

� �

�������

�������
���

�������

�������
���

�������

�������
���

�������

�������
���

�������

�������
���

�������

�������
���

�������

�������
���

�������

�������
���

�������

�������
���

�������

�������
���

�������

�������
���

�������

�������
���

�������

�������
���

�������

�������
���

�������

�������
���

�������

�������
���

������	�


�
	

���������

���������

���

���������

���������

���

���������

���������

���

���������

���������

���

���������

���������

���

���������

���������

���

���������

���������

���

���������

���������

���

���������

���������

���

���������

���������

���

���������

���������

���

���������

���������

���

���������

���������

���

���������

���������

���

���������

���������

���

���������

���������

���

�

�

�

� ��

�

�

�

�

         

 (12)

where:    w1i,n = sn+1 – xi = ∆s⋅(n – i + 0,5),   w2i,n = sn – xi = ∆s⋅(n – i – 0,5),

w3i,n = sn+1 + xi = 2a + ∆s⋅(n + i – 0,5),   w4i,n = sn + xi = 2a + ∆s⋅(n + i – 1,5),

z1j,k = tk+1 – yj = ∆t⋅(k – j + 0,5),  z2j,k = tk – yj = ∆t⋅(k – j – 0,5),

z3j,k = tk+1 + yj = 2c + ∆t⋅(k + j – 0,5),   z4j,k = tk + yj = 2c + ∆t⋅(k + j – 1,5).

The numerical calculation of charge density qk,n resolves itself into the solution of the
algebraical equation system (11).

Denoting:
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where p = (j – 1)⋅NH + i and r = (k – 1)⋅NH + n, the equation system (11) can be presented in
matrix form:

A⋅Y = B                                                          (13)
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2.3. Calculation results

Calculations of electrical charge distribution have been realised using MathCad program,
and the exemplary result is shown in Fig. 3.

20
0

20

40
40

qk,n

k
 n

Fig. 3. Numerical calculated distribution of electrical charge density

On this basis the capacity values (equation (14)) for two parallel conducting paths of
determined width and length have been estimated. The computations were made for following
data: distance between paths equal 0,4 mm, the width of two paths equal 0.6 mm and their length –

 variable, dielectric permeability ε0 = 8,85⋅10-12 F/m, dielectric constant of the air ε2r = 1 and of

ceramic substrate ε2r = 9,08.

The results of calculations on relation (14) have been compared with the capacity values
computed by the assumption that the conducting layers are of infinite length and the capacitance
between these conductors is determined per unit length [5] (Fig. 4).

This comparison shows that the values of capacitance obtained on the base of equation (14),
especially for small length of conducting paths are considerably greater. It results from taking into
account the surface density of electrical charge, which becomes infinitely great on the edges
of paths.
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Fig. 4. Variations of capacity CM,: 1 – calculated in according to relation (14;
2 –  on the basis of [5];  L – length of conducting paths

3. CAPACITANCE CALCULATION IN DEFLECTED CONDUCTING
PATH SYSTEM

An analysed problem deals with the system of two rectangular, symmetrically deflected for each
other conducting paths (Fig. 5).

α

x

y

DL

sz

Fig. 5. Configuration of deflected path system in plane microcircuit:
DL – length, SZ – width of each path

The solution of capacitance determination between these paths consists here of three parts.
• in the first one the Fourier integral method for determination of electrical charge

distribution in parallel conducting path system (described above in p.2.1) is applied,
• in the second step the primary coordinate system is rotated at an α-angle. As a result of this

transformation the modified integral equation of charge distribution is obtained.
• the last one consists in the numerical solution of unknown charge distribution and finally,

the capacitance value is calculated.

3.1. Rotation of coordinate system

To simplify the solution way, the coordinate system was rotated – by taking into account
symmetry of path system – at an α-angle (Fig.3). Relations between primary (s, t) and new (u, v)
coordinates amount to:

s(u,v) = u�cos(α) + v�sin(α), and t(u,v) = -u�sin(α) + v�cos(α).                 (15)
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A consequence of coordinate transformation is the conversion of variables in double integral
according to formula [5]:

∫∫ ∫∫ ⋅=
Ω ∆

���.�.���/��.���(��.���"���"�(��(�"��                           (16)

where Ω and ∆ are the closed areas in planes (s,t) and (u,v) respectively, and Jacobian J(u,v) is
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3.2. Numerical solution of charge distribution

The integral equation (17) can be solved with use of numerical calculation method, similarly
as in p. 2.2. The discretisation of this equation has been applied (Fig. 3).
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Fig. 6. Partition of conducting layer: NH, NV – numbers of width and length partition
un = a + (n - 1)⋅∆u; n = 1, . . , NH+1; vk = c + (k - 1)⋅∆v; k = 1, . . , NV+1;

∆u = SZ/NH, ∆v = DL/NV;

Besides, it was here assumed that equation of electrical charge distribution is fulfilled in points (ηi

, ξj ): for i = 1, . . , NH  and  j = 1, . . , NV, where ηi = a + (i – 0,5)⋅∆u; ξj = c + (j – 0,5)⋅∆v and
that qk,n = const. for un <u <un+1, vk < v <vk+1.
As a common point for both coordinate systems there is accepted the point A with coordinates:

A(s, t): � sA, tA and A(u, v): � a = sA�cos(α) - tA�sin(α), c = sA�sin(α) + tA�cos(α).
Taking into consideration the above assumptions and denotations the equation (17) can be
written as:
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The subintegral function F(u, v, η, ξ) is a result of variable conversion of function F(s, t, x, y).
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where Dij  = ηi�cos (2α) + ξj�sin(2α) and Eij = ξj�cos (2α) – ηi�sin(2α). All these integrals can be
solved analytically.
The numerical calculation of charge density qk,n resolves itself into the solution of the algebraical
equation system (18) identically as in p.2.2, where
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3. CALCULATION RESULTS

Calculations of electrical charge distribution have been realised using MathCad program. On this
basis the capacity values (equation (18)) for two non-parallel conducting paths of determined
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width and length as a function of α-angle have been estimated. The exemplary computations (Fig.
4) were made for following data: distance of unchangeable point A to y-axe equal 0.2 mm, the
width and length of two paths equal 0,5 mm, dielectric permeabilityε0 = 8,5⋅10-12 F/m, dielectric

constant of the air ε2r = 1 and of ceramic substrate ε2r = 9,08.

α

 x

y

����

����

����

����

����

����

����

� �� �� �� 	� �� ��

�� ��

α �

�																																																																														0

Fig. 7. Capacity as a function of α-angle: a – path configuration,
 b – capacitance value

4. CONCLUSIONS

The obtained results of presented solution method of capacity calculation confirm the nature of
capacity changes conditioned by geometrical parameter of layers and the usefulness of this method
for determining of capacity values especially for layers of small dimensions.
From the waveform of the curve in Fig. 7,b it can be concluded about the correctness of the
elaborated calculation method. For the exemplary configuration of the square conducting paths the

capacitance value both for angle α and 90 – α is the same. For α = 0, the result is identical with
result for parallel conducting path system (p.2)
The experimental verification – in case of thick-film circuits – requires to take into consideration
the finite thickness of ceramic substrate (it is a subject of further studies) and applying of a high
accuracy measuring equipment.

The Fourier's integral equation approach, with the help of effective computers, enables to
treat rather complex and finite geometric configurations of conducting paths that are useful in the
design of modern film circuits.
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