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Y crarTi po3risiHyTO HOBY HeTpaJdHLiiHY HelipoMepeskeBY apXiTeKTypy — NOABiHHMI
OpPTO-HeiipoH. 3anpoONOHOBAHO AJTOPHTM HABYAHHA HA OCHOBI NpOUEAYPH ONTHMI3Amil
apyroro nopsiiky. Bkazano mepeBarm po3rJisiHyTol KOHCTPYKIil NOPIiBHSIHO 3 KJACHYHHMH
HeilipoHHUMH Mepexxamu. Haxano pesyabraTn iMiTaniiiHOro Moae/JI0BaAHHS.

In this paper new non-conventional neural network architecture called double ortho-
neuron is considered. Learning algorithm based on optimization procedure of the second
order is proposed. The advantages of this construction are pointed out. Simulation results are
given.

Introduction

Nowadays there are many methods and methodologies for process approximation and forecasting.
Almost all of them are based on two basic approaches: heuristical and mathematical [1].

Heuristical approach is based on using of the experts knowledge in the current subject field. This is
the oldest approach for process forecasting and approximation and it has following disadvantages:
excessive subjectivity, complexity, labour-intensiveness etc. So these methods usually applied only for
processes which cannot be formalized or their formalization requires substantial efforts.

At the present time mathematical methods are often used for solving process approximation and
forecasting problems on account of objectivity of obtained information, high precision of received results
(if the model has been chosen correctly) and possibility of the process automation. Artificial neural
networks technique is one of the most attractive technologies within mathematical approach.

Nowadays artificial neural networks are widely applied for solving a variety of problems concerning
to nonstationary, nonlinear signal processing and analysis in conditions of current and prior uncertainty.
The most popular are multilayered architectures with sigmoidal, spline or bell-shaped activation functions
in their nodes, such as perceptrons, radial-basis function neural networks, wavelet neural networks, neo-
fuzzy systems etc [2].

But all these architectures have well known disadvantages, such as significant computational
complexity during training process, lack of criteria of network architecture selection (quantity of nodes in
each layer) for solving specified problem and so on.

Alternative approach for nonlinear functions approximation is using orthogonal polynomials [3]. It
can be useful to reduce computational complexity and to increase accuracy of forecasting.

1. Artificial neural networks with orthogonal activation functions.
Elementary one-dimensional system described in “input-output” space of some unknown functional
dependencg(x) can be expressed by the following sum:

h
¥ 3= po( Y+ Wer (D+...+ Whon(X =D W9 (%), 1)
=0

where x and y(x) are input and output variables of the estimated process correspondingh), —
orthogonal polynomial of theth order [ =0, 1, 2,...,h), which possesses the orthogonality property

N
D 2i (X R)pg (X(K) =0,V =, (2)
k=1
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j» 9, — non-negative integer numbeks= 1, 2,...N — current discrete time or the ordinal humber of an
element in the sampling.

Equation (1) can be realized by the elementary scheme shown at the fig. 1 and called the ortho-
synapse.

P

@n,

Fig 1. The ortho-synapse — OS

At the fig. 1% is thei-th ( = 1, 2,..., n) component of the multidimensional input signal

X = (Xt Xoreees %) w; (j = 1, 2,...n) — synaptic weights which should be determined. Output signal of the
ortho-synapse can be expressed in the form

h
(9= Wi i (%): (3)
j=0
Ortho-synapse has the same architecture like a nonlinear synapse of the neo-fuzzy-neuron [4-5] but
provides smooth polynomial approximation instead of piecewise-linear approximation.

Using ortho-synapse (3) more complex architecture can be introduced like the ortho-neuron shown
at the fig. 2.

Fig 2. Ortho-neuron — Qn

Ortho-neuron which has the same architecture like a neo-fuzzy-neuron [4-5] realizes, the mapping

n n h
u=> fi06)=>.> wiej (%), 4
i1

i=1 j=0
71

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua



and provides high precision approximation of nonlinear nonstationary signals and processes [6-9].0rtho-
neuron has demonstrated good results quality and high rate of convergence in solving stochastic and
chaotic process forecasting problem [10].

Goal of this work is improving approximation properties and forecasting quality in conditions of
uncertainty about process properties and disturbances affecting on them.

2. Double ortho-neuron
Let us introduce double ortho-neuron (DON) shown at fig. 3 which has the same architecture like a
double wavelet-neuron [11] but differs from it with used activation functions.

Fig 3. Doube ortho-neuron — DON

Double ortho-neuron realizes the nonlinear mapping

h h n h
0= To () =D Wio@lo () =D Wio@io| D D Wi @i (X)) |, (5)

1=0 1=0 i=1 j=0
where w; ,w,, — tunable synaptic weights in the hidden and output layers correspondingly,, —
activation functions in ortho-synapses of the hidden and output layers corresponbingly O, 1, 2,...,
n) — dimensionality of the appropriate ortho-synapse dimensionality of the input signak; (k) — value
of i-th input signal's component at the time moniefar for k-th training sample).

n
Double ortho-neuron contains = Zhi tunable parameters and, as it can be readily seen, doesn'’t
i=0
subjected to the “curse of dimensionality”.

Double ortho-neuron uses orthogonal polynomials of one variable for the activation functions.
Particular system of functions can be chosen accordingly to the specificity of the solved problem. If the
input data is normalized on the hypercube [-1, tHe system of Legendre polynomials orthogonal on the
interval [-1, 1] with weighty(X) =1 can be used:

[i/2] oMl .
H()q)zz—l Z )P .(2J 2.|O)- XiJ—ZP
60 ACi-pI(i-2p)!
where [ ] — is the integer part of a number.
Also to simplify calculations we can exploit recurrence formula

2i+1 i
j’+1 j%lpj_l(m. (7)

: (6)

P1(%) = X P (%) -
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System of Legendre polynomials is best suited for the case when we exactly know interval of data
changes before network construction. This is quite common situation as well as an opposite one. For the
other case the following system of Hermite orthogonal polynomials can be used:

[1/2] I-2p
B 1P (2u)
Hy(u) = l'pz_:( )p(l 20)0° (8)

This system is orthogonal ofr-o,+0) with weight function H(u) =e_uz and gives us a possibility
to decrease influence of the data lying far from origin. Therefore using system of Hermite orthogonal
polynomials in the ortho-synapses of double ortho-neuron's output layer is necessary, because of it allows
to avoid signals’ normalization in the hidden layer during training process.

3. Training of the double ortho-neuron.
Training of double ortho-neuron consists in adjusting of weight coefficients that are situated inside
ortho-synapses. The sum of the squared errors is be used as the learning criterion:

E(k)=§(d(k)—o<k»2=§e(k)2, )

wherek =1,2,... — discrete time or ordinal number of samgi{k) — value of the reference signal at time
momentk (for k-th training sample)p(k) —value of the output signal.
For the adjusting output layer’'s weight coefficients gradient algorithm can be used

W( k1= W (B+70 (K&K (u(k)), (10)
or in vector notation:

W( k1= w(R+7o(R koo (u(k)), (11)
where 7 k) - learning rate parameter w, (K)= (WOO,Wlo,...,WhOO)T - (hyx1) vector,

n_ h
90 (K)= @oo (UK))01o U (k)),---mhoo(U(k)))T — (hyx2) vector, UK =2 w ¢; (x(K))-

i=1 j=0
Also Kaczmarz-Widrow-Hoff adaptive algorithm [12, 13] can be used for this purpose as well:

9+ L= 12)

oo ()]
and because of signals’ orthogonality on the weightsnwuts algorithm (12) has maximally possible rate
of convergence [14].

When we deal with noisy signal it will be reasonable bring in some additional smoothing. Following
procedure can be used for this purpose [15]

{ W ke 3= w(R+ B (R(A(K) - o(k))go (K),

b (k+ D=arg () + oo (),
where 0<a <1 — forgetting factor. Whermx =0 procedure (13) coincides with algorithm (12) and when
a =1 we obtain stochastic approximation learning rule.
At last weight coefficients of the output ortho-synapse can be adjusted with the standard least square
method, minimizing learning criterion specified on entire training set

wp (K =

(13)

N 1 N X
= E(K) =§Ze (K), (14)
k=1 k=1
in the form
N -1y N
Wo(N):{Z¢’o(k)¢;)r (k)J D 96 (BAR=RAN 0o (Kd(K). (15)
k=1 k=1 k=1
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Expression (14) also can be represented in recursive form:
W ke 1= w( b+ Rk 3(d(K) - o(k))e, (),
Fks 1) = Pl - R B2e (ke Jog (kt JP(K) (16)
T pg (k+ I P(Kg, (k+1)
By act of condition (2) matrixeB(N), P(k), P(k+1) are diagonal (or then to the same) and therefore
learning process will obtain numerical stability and high rate of convergence.
Synaptic weights of the hidden layer are included nonlinearly into the description of the double
ortho-neuron. For adjusting of ortho-synapses of the hidden layer it is necessary to use algorithms based or

the error backpropagation procedures.
Let us define the following criterion function

2
n h
£ =] dR= B(Y D w0 (% () a7)
i= j=0
and introduce can use gradient algorithm for adjusting synaptic weights of the hidden layer in the form
WK DE W ke ( kel & (Boji (x(R)= wi (K)+ 7 (K5 (K)gj; (X (K)), (18)
or in vector notation:
Wkt 3= w (K +7(Ko(K)e; (X (k) (19)

where 6(K = gKk)f'(k) — o -error, accepted at the multilayered neural networks learning theory,

W= (i (K, (9,...wH; ()" = (hyx1) vectors, g (K= i (X (K).2ri Of ()i (% () =
(hyx1) vectors.

However disadvantages of gradient algorithm are well known, so we propose the modification of the
Levenberg-Marquardt procedure [16, 17] for tuning ortho-synapses of the hidden layer which possesses
both filtering and tracking properties:

{ w(k+ 3= w(K+ 1 (K5 (k)g, (K),
r(kt D=ar(R+|p (k+ D 0 <1.

Because of the orthogonality or orthonormality of the activation functions learning procedure will
retain numerical stable. Also using systems of orthogonal polynomials as activation functions allows to
speed up learning process and decrease time required for adjusting weight coefficients.

(20)

4. Smulation results.
For signal forecasting and approximation neuropredictor of stochastic and chaotic processes based
on double ortho-neuron shown on fig. 4 can be used.
We have applied proposed neuropredictor for the forecasting of a chaotic process defined by the
Mackey-Glass equation [18]
0,2t(t —7)

10 (t B 2') - O,ly(t) . (21)

y'(t) =
1+y
Signal was quantized with step 0,1. We took a fragment containing 500 points for training set. Our
goal was forecasting signal value on six steps forward using its prehistory (its values at time rpments
(k-6), (k-12) and k-18)). Testing set contained 9500 element of the sequence — signal values from 501
to 1000.

For estimation of received result we used normalized mean square error (22).

N
> € (k+q)

NRMSEk, Ny=FL (22)
No

whereo — mean square deviation of the predictable process on the training set.
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e(k)

Learning algorithm

Fig 4. Neuropredictor based on DON

Following systems of orthogonal polynomials were used as activation functions: Tschebyshev 1-st
type orthogonal polynomials (T1), Tschebyshev 2-nd type orthogonal polynomials (T2), Hermite
orthogonal polynomials (H1), Hermite orthonormalized polynomials (H2) and Laguerre orthogonal
polynomials (L).Quantity of activation functions= hy= h in ortho-synapses varied from 2 to 9.
Forecasting errors are given in the table.

Doubel ortho-neuron forecasting errors

System of polynomials
h T1 T2 H1 H2 L

0.425 | 0.425| 0.425 0.086 | 0.425
0.084 | 0.078| 0.124 0.05 0.126

0.064 | 0.045 0.032| 0.063
0.109 | 0.050f 0.039 | 0.044| 0.049
0.085 0.19 0.209 0.051 | 0.159
0.314 | 1.027| 0.199 0.052 | 0.138
13.62 2.29 0.249 0.056 | 0.202
80.93 1131 0.26 1.58] 0.252

Olo(N[o|lO|~|lwW|N

Dynamic of the error variation process with increasing number of activations functions in ortho-
synapses is shown on fig. 5.

To solve Mackey-Glass time-series forecasting problem only three-four activation functions in each
ortho-synapse are necessary. So we have only 20 — 25 adjustable parameters — much lesser then if we use
conventional artificial neural networks. Therefore time required for adjusting weight coefficients will be
lesser too.

As can be readily seen the best result has been received when systems of Hermite polynomials (both
orthogonal and orthonormalized) were used as activation functions. This fact can be explained by the mean
of these two systems have interval of orthogondlity, ] and output from the hidden layer signal is not
normalized on interval [-1, 1]. So if we use another system of polynomials (which have [-1,1] interval of
orthogonality) situation when we obtain signal which not belongs to this interval at the output layer’s input
may occur and lead to decreasing of the forecasting quality.
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Fig 5. Double ortho-neuron forecasting errors
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Conclusion

Double ortho-neuron provides quite good approximation quality using much lesser adjusting
parameters then conventional artificial neural networks. When we deal with noisy or missed data we can
configure input ortho-synapses in the hidden layer and adjust them uniquely for each input component of
the signal. Acting in such manner we can assure more or less generalization level for each component of
the input vector and achieve better quality of approximation or forecasting.

Double ortho-neuron is an enough simple and compact architecture, not affected by the “curse of
dimensionality”. This architecture provides high precision of nonlinear nonstationary signal approximation
and forecasting. An apparent advantage is easier implementation and lower computational complexity as
compared to the conventional artificial neural networks.
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