[2] Theory of Chemisorption. Edited by J. R. Smith. // Springer–Verlag, Berlin- New York, 1980.

[3] Поверхностные свойства твердых тел. Под ред М.Грина. М.: Мир 1980.

[4] Зенгуил Э. Физика поверхности. М.: Мир, 1980.

[5]. Х.Дункен, В.Лигин. Квантовая химия адсорбции на поверхности твердих тел. М.: 1987.

[6] Newns D.M. // Phys.Rev. 1969. 178. No3. p.1123-1135.

[7] Anderson P.W. // Phys. Rev. 1961. 124. No1. p.41-53.

[8] R. Schrieffer and R.Gomer. // Surf. Science. 1971. 25. p.315.

[9] J.L.Moran-Lopez and L.M.Falicov. // Phys.Rev. B, 1982. 26. No5. p.2560-2565.

[10] M.Streszewski and C.Jendrzjek. // Phys.Rev. B. 1986. 34. No6. p.3750-1135.

УДК 537.226;538.936;621.315

Франів А.В., Пелещишин Р.В., Тернавська С.В., ^{*}Франів О.В. Львівський національний університет ім. Ів.Франка, фізичний факультет *ДУ"Львівська політехніка", кафедра фізики

СТРУКТУРА ТА ДИНАМІКА ҐРАТКИ ТВЕРДИХ РОЗЧИНІВ In _xTl _{1-x} I

© Франів А.В., Пелещишин Р.В., Тернавська С.В., ^{*}Франів О.В., 2000

Наведено експериментальні результати досліджень фізичних властивостей вперше вирощених твердих розчинів заміщення $In_x Tl_{1-x}I$ в області 0,2<x<1,0. Розраховано параметри кристалічної ґратки та концентраційна залежність її об'єму у процесі катіонного заміщення вузлів. На основі ІЧ-спектрів поглинання зроблено висновки про особливості фононної підсистеми ТРЗ. Отримано частоти внутрішньо- та міжмолекулярних коливань і величину їх анізотропії вздовж напрямків Е $\|c i E\|$ а.

In manuscript points experimental results about investigation of physical properties of first grown solid solution $In_xTl_{1-x}I$ in concentration region 0,2<x<1,0. Counted parameter crystal lattice and particularity variance it bulks in process of cation substitution knots. On infrared reflection spectrum conclude character phonon dispersion in solid solution.

Вступ

Науковий інтерес до сполук $A^{3}B^{7}$ пов'язаний з особливістю їх кристалічної будови і наявністю різкої анізотропії механічних, електричних й оптичних констант вздовж трьох кристалографічних напрямків. Для практичного застосування, а саме для можливості керованої зміни таких фізичних характеристик, як ширина забороненої зони, показник заломлення та коефіцієнт поглинання, перспективними є тверді розчини заміщення (TP3) InBr_xCl_{1-x}, InB_xI_{1-x} та In_xTl_{1-x}I. Деякі результати з динаміки екситонних збуджень і дисперсії показника заломлення вже опубліковані нами в роботах [1-3]. У цій статті обговорюються результати експериментальних досліджень структурних параметрів та інфрачервоні спектри відбивання з метою з'ясування особливостей трансформації кристалічної гратки та фононної підсистеми ТРЗ In_xTl_{1-x}I.

1. Вирощування і структура кристалічної гратки In_xTl_{1-x}I

Рис. 1. Дифрактограми твердого розчину замішення In_xTl_{1-x}I

Використовуючи результати, опубліковані у [3-5], методом Бріджмена із ампули вирощували бінарні сполуки InI та TII, причому іодид індію синтезували із окремих компонент індію і йоду марки ОСЧ при температурі Т=800 К в інертній атмосфері. Іодид талію марки "ЧДА" піддавався тридцятикратній перекристалізації методом зонної плавки. За допомогою спектрального аналізу встановлено, що вміст домішок в отриманих у такий спосіб сполуках InI та ТІІ не перевищував 1.10⁻⁴%. Далі, використовуючи бінарні кристалічні блоки, взяті в еквімолярних співвідношеннях, вирощували TP3 In_xTl_{1-x}I з наперед заданою концентрацією компонент. Зауважимо, що при x<0,2 одержані кристали мали поліблочну структуру, що можна пояснити, виходячи із таких міркувань. Відомо [6], що при Т=717К іодид талію кристалізується з утворенням кубічної гратки просторової групи О_h, а при T<450К відбувається фазовий структурний перехід з кубічної в орторомбічну D_{2h}¹⁷ просторову групу симетрії. Тобто при збільшенні ТІІ компоненти у процесі росту ТРЗ утворюються макрообласті у вигляді великомасштабних мікрокристалів орторомбічного іодиду талію та твердого розчину з x>0,2. Очевидно, кристали з x<0,2 не є твердими розчинами заміщення, а становлять суміш ТРЗ і бінарних мікрокристалів ТІІ.

> У зв'язку з тим в роботі наведено результати рентгеноструктурних досліджень ТРЗ In_xTl_{1-x}I з концентрацією компонент 1,0>x>0,2.

> Як видно з рис. 1, у всіх штрих-рентгенограмах вирощених твердих розчинів заміщення присутні максимуми, що ідентифіковані як {hkl}- рефлекси

> орторомбічної (D_{2h}¹⁷) ґратки. Аналіз дифрактограм і розрахованих за їх допомогою постійних елементарної гратки а, b, c, що наведені в таблиці, однозначно

вказують на те, що отримані нами кристали становлять ряд неперервних TP3. Підтвердженням зробленого висновку може служити наведена на рис.2 концентраційна залежність об'єму елементарної комірки $In_x Tl_{1-x}I$.

Функція V(x) є лінійною і монотонною в області 1.0>x>0.2, що вказує на відсутність фазових структурних переходів в отриманих зразках. Отже, ТРЗ утворюється при заміщенні іонів індію на талій у вузлах орторомбічної ґратки, зростання об'єму елементарної комірки відбувається за рахунок того, що іонний радіус Tl>In.

кристал	a, Å	в , Å	с , Å	$\mathbf{V}, \mathrm{\AA}^3$
InI	4,729	12,688	4,930	295,367
In _{0,95} Tl _{0,05} I	4,720	12,719	4,939	296,51
$In_{0,7}Tl_{0,3}I$	4,698	12,776	4,978	298,776
In _{0,5} Tl _{0,5} I	4,658	12,817	5,050	301,494
In _{0,4} Tl _{0,6} I	4,631	12,852	5,084	302,587
$In_{0,3}Tl_{0,7}I$	4,618	12,864	5,128	304,414
In _{0,2} Tl _{0,8} I	4,605	12871	5,132	305,199
TlI	4,559	12,922	5,229	308,048

Постійні елементарної комірки ТРЗ In_xTl_{1-x}I просторової групи D_{2h}¹⁷

Рис. 2. Концентраційна залежність об'єму елементарної комірки

2. ІЧ- спектри ТРЗ In_xTl_{1-x}I

Експериментальні дослідження оптичних властивостей $In_x Tl_{1-x}I$ виконувались, насамперед, для з'ясування анізотропії фононного спектра кристалів залежно від орієнтації світлового вектора. TP3 $In_x Tl_{1-x}I$ характеризуються центром інверсії і утворюються з двох молекул

Рис. 3. Спектри IЧ-поглинання ТРЗ $In_{0,95}TI_{0,05}I$ в напрямку: 1- Е $\|c, 2 - E\|$ а

(4 атоми) у примітивній комірці. Відповідно у фононному спектрі повинні проявлятися 9 коливних оптичних мод, що перетворюються незвідними представленнями групи D_{2h}^{17}

$$2A_{1g}+2B_{1g}+2B_{3g}+B_{1u}+B_{2u}+B_{3u}$$

де перші 6 мод спостерігаються у спектрах комбінаційного розсіювання (КР), решта 3 моди дозволені в ІЧ фотопереходах. З міркувань симетрії випливає еквівалентність B_{1u} і B_{2u} представлень, тому експериментальні дослідження необхідно проводити вздовж напрямків $E \| \mathbf{c} \text{ та } \mathbf{E} \| \mathbf{a}$, що розташовані у площині шару і відповідають цим представленням.

Вимірювання здійснювали на інфрачервоному спектрофотометрі Specord-M-80 в спектральному діапазоні 200-1500 см⁻¹, з роздільною здатністю не гірше ніж 1 см⁻¹.

На рис.3 наведені ІЧ-спектри ТРЗ $In_xTl_{1-x}I$. Можна виділити такі характерні особливості. В області 1300-1500 см⁻¹ спостерігаються три інтенсивні смуги з максимумами 1320 см⁻¹, 1350 см⁻¹ та 1385 см⁻¹ в поляризації Е $\|$ с. Істотна анізотропія простежується в області , що формується внутрішньомолекулярними І-І коливаннями. Для класифікації коливань, використовуючи методики [7], розраховували оптичні функції ТРЗ: дійсну (ϵ_1), уявну (ϵ_2) частини діелектричної проникності і функції оптичних втрат Im{-1/ ϵ }. Встановлено, що найменше розщеплення LO-TO (~15 см⁻¹). Таке розщеплення характерне для міжмолекулярних коливань типу {InI}-{TII}. Групи смуг в області 200-400 см⁻¹ для поляризації Е $\|$ с та Е $\|$ а з розщепленням (10-25 см⁻¹) ідентифікуються як коливання І-І. У зв'язку з існуванням ланцюжків типу In-Tl вздовж напрямку Е $\|$ с очевидно, що інтенсивна смуга 820 см⁻¹ відповідає коливанню між заміщуваними атомами. З отриманих результатів випливає, що анізотропія кристалічного (внутрішньомолекулярного) поля перевищує відповідні міжмолекулярні розщеплення LO-TO.

Висновки

Насамкінець зауважимо, що отримані експериментальні результати вказують на перспективність досліджень дисипативної підсистеми ТРЗ $In_x Tl_{1-x}I$, у зв'язку з хорошим спектральним розділенням смуг IЧ поглинання і специфікою дисипативної підсистеми, що зумовлена різкою анізотропією хімічного зв'язку. На наш погляд, досліджувані зразки є кристалами неперервного ряду твердих розчинів заміщення. Фононна підсистема $In_x Tl_{1-x}I$ характеризується сукупністю смуг, поляризаційна залежність коефіцієнтів поглинання в максимумах яких дозволяє зробити висновок про можливість практичного застосування TPЗ як матеріалів для фазово-амплітудних модуляторів IЧ- випромінювання.

[1] Блонський. І.В., Бігун М.І., Лунь Ю.О., Франів А.В. УФЖ, 1992, 37, 971.

[2] Блонський І.В., Бігун М.І., Лунь Ю.О., Франів УФЖ, 1992,37, 547,.

[3] Франів А.В., УФЖ, 1999,44, 1473.

[4] Постникова О.П., Денисов Ю.Н., Федоров П.И.. ЖНХ, 1973,18, 1436.

[5] Jones R., Tempelton D. Acta crystal, 1955,8, 847.

[6] Levy F., Mooser E. Helv. Phys. Acta,), 1972, 45, 69.

[7] Крочук А.С., Китык И.В., Колинько Н.И., Франив А.В., Неорганические материалы, 1992, 28, 619.

[8] Блонский И.В., Крочук А.С., Стецишин Т. Л., Франив А.В., ФТТ, 1986, 28, 3136.