Software Fault Tolerance

Kazimov Tofig Hasanaga, Jalilian Shahrukh Mostafa

Azerbaijan National Academy of Sciences Institute of Information Technology, A31141, Baku,
Ph. Agayev st. 9, E-mail: depart9@iit.ab.az

Abstract — Because of our present inability to produce error-
firee software, software fault tolerance is and will continue to
be an important consideration in software systems. The root
cause of software design errors is the complexity of the
systems. This paper surveys various software fault tolerance
techniques and methodologies. They are two groups: Single
version and Multi version software fault tolerance techniques.
1t is expected that software fault tolerance research will benefit
from this research by enabling greater predictability of the
dependability of software.

l. Introduction

In this paper we present fault tolerance techniques
applicable to software. These techniques are divided into
two groups: Single version and Multi-version software
techniques. Single version techniques focus on improving
the fault tolerance of a single piece of software by adding
mechanisms into the design targeting the detection,
containment, and handling of errors caused by the
activation of design faults. Multi-version fault tolerance
techniques use multiple versions of a piece of software in
a structured way to ensure that design faults in one
version do not cause system failures. A characteristic of
the software fault tolerance techniques is that they can, in
principle, be applied at any level in a software system:
procedure, process, full application program, or the whole
system including the operating system [1].

II. Single —Version Software Fault
Tolerance Techniques

Single version techniques add to a single software
module a number of functional capabilities that are
unnecessary in a fault-free environment. Software
structure and actions are modified to be able to detect a
fault, isolate it and prevent the propagation of its effect
throughout the system. In this section, we consider how
fault detection, fault containment and fault recovery are
achieved in software domain [3]. The schema of the
complete taxonomy of the single version software fault
tolerance techniques is shown in Figure 1.

1-Fanlt Detection

2 Fault Containment

Single Version
1 Exesption Handling

#Fuult Recovery 2-Checkpoint &Restart

Techninuss

3-Process Pairs

4-Data Diversity

Figure l.single — version software fault tolerance
techniques

[I. 1. Fault Detection Techniques

The goal of fault detection in software is to determine that
a fault has occurred within a system. Single-version fault

tolerance techniques usually use various types of acceptance
tests to detect faults. The result of a program is subjected to a
test. If the result passes the test, the program continues its
execution. A failed test indicates a fault. A test is most
effective if it can be calculated in a simple way and if it is
based on criteria that can be derived independently of the
program application. The existing techniques include timing
checks, coding checks, reversal checks, reasonableness
checks and structural checks[3].

Timing checks; are applicable to systems whose
specification include timing constrains. Based on these
constrains, checks can be developed to indicate a deviation
from the required behavior. Watchdog timer is an example of
a timing check. Coding checks; are applicable to systems
whose data can be encoded using information redundancy
techniques. Cyclic redundancy checks can be used in cases
when the information is merely transported from one module
to another without changing its content. Arithmetic codes
can be used to detect errors in arithmetic operations. In some
systems, it is possible to reverse the output values and to
compute the corresponding input values. For such system,
reversal checks; can be applied. A reversal check compares
the actual inputs of the system with the computed ones. A
disagreement indicates a fault. Reasonableness checks; use
semantic properties of data to detect fault. For example, a
range of data can be examined for overflow or underflow to
indicate a deviation from system’s requirements. Structural
checks; are based on known properties of data structures. For
example, a number of elements in a list can be counted, or
links and pointers can be verified. Structural checks can be
made more efficient by adding redundant data to a data
structure, e.g. attaching counts on the number of items in a
list, or adding extra pointers.

lI. 2. Fault Containment Techniques

Fault containment in software can be achieved by
modifying the structure of the system and by putting a set
of restrictions defining which actions are permissible
within the system. In this section, we describe four
techniques for fault containment: modularization,
partitioning, system closure and atomic actions [3].

It is common to decompose a software system into
modules with few or no common dependencies between
them. Before performing modularization, visibility and
connectivity parameters are examined to determine which
module possesses highest potential to cause system
failure. The isolation between functionally independent
modules can be done by partitioning the modular
hierarchy of a software architecture in horizontal or
vertical dimensions. Another technique used for fault
containment in software is system closure. This technique
is based on a principle that no action is permissible unless
explicitly authorized. In an environment with many
restrictions and strict control all the interactions between

“COMPUTER SCIENCE & ENGINEERING 2009” (CSE-2009), 14-16 MAY 2009, LVIV, UKRAINE 17

the elements of the system are visible. Therefore, it is
easier to locate and remove any fault. An alternative
technique for fault containment uses atomic actions to
define interactions between system components. An
atomic action among a group of components is an activity
in which the components interact exclusively with each
other. There is no interaction with the rest of the system
for the duration of the activity. Within an atomic action,
the participating components neither import, nor export
any type of information from non-participating
components of the system.

1. Fault Recovery Techniques

Once a fault is detected and contained, a system
attempts to recover from the faulty state and regain
operational status. If fault detection and containment
mechanisms are implemented properly, the effects of the
faults are contained within a particular set of modules at
the moment of fault detection. The knowledge of fault
containment region is essential for the design of effective
fault recovery mechanism [3].

[1.2.1. Exception Handling

In many software systems, the request for initiation of
fault recovery is issued by exception handling. Exception
handling is the interruption of normal operation to handle
abnormal responses. Possible events triggering the
exceptions in a software module can be classified into
three groups [3]: Interface exceptions; are signaled by a
module when it detects an invalid service request. This
type of exception is supposed to be handled by the
module that requested the service. Local exceptions; are
signaled by a module when its fault detection mechanism
detects a fault within its internal operations. This type of
exception is supposed to be handled by the faulty module.
Failure exceptions; are signaled by a module when it has
detected that its fault recovery mechanism is enable to
recover successfully. This type of exception is supposed
to be handled by the system.

[1.2.2. Checkpoint and Restart

A popular recovery mechanism for single-version
software fault tolerance is checkpoint and restart, also
referred to as backward error recovery. As mentioned
previously, most of the software faults are design faults,
activated by some unexpected input sequence. These type
of faults resemble hardware intermittent faults: they
appear for a short period of time, then disappear, and then
may appear again. As in hardware case, simply restarting
the module is usually enough to successfully complete its
execution. The general scheme of checkpoint and restart
recovery mechanism is shown in Figure 2.

Figure 2. Checkpoint and Restart Recovery

[1.2.3. Process Pairs

A process pair uses two identical versions of the software
that run on separate processors (Figure 3). The recovery
mechanism is checkpoint and restart. Here the processors are
labeled as primary and secondary. At first the primary
processor is actively processing the input and creating the
output while generating checkpoint information that is sent
to the backup or secondary processor. Upon error detection,
the secondary processor loads the last checkpoint as its
starting state and takes over the role of primary processor. As
this happens, the faulty processor goes offline and executes
diagnostic checks. If required, maintenance and replacement
is performed on the faulty processor. After returning to
service the repaired processor becomes the secondary pro-
cessor and begins taking checkpoints from the primary[1].

Prirary

Processor \
: Selection

! g | ST Outpt
Tt ¥ i /1
Seconday T_
Promessar Exr

Dutectim

Figure 3. Logical Representation of Process Pairs

II.2.4. Data Diversity

Data diversity is a technique aiming to improve the
efficiency of checkpoint and restart by using different
inputs re-expressions for each retry. Therefore, if inputs
are re-expressed in a diverse way, it is unlikely that
different re-expressions activate the same fault[3]. Data
re-expression is used to obtain alternate input data by
generating logically equivalent input data sets. Given
initial data within the program failure region, the re-
expressed input data should exist outside that failure
region. A re-expression algorithm, R, transforms the
original input x to produce the new input, y = R(x). The
input y may either approximate X or contain X’s
information in a different form. The program, P, and R
determine the relationship between P(x) and P(y). Figure
4 illustrates basic data re-expression[2].

Exemute |—# F)
X ¢ - F
Ee-expression p| Exemte —» Fivi
y=R(x] P

Figure 4. Basic Data Re-expression method.

There are three basic techniques for data diversity [1]:

e Input Data Re-Expression, where only the input
is changed.

e Input Re-Expression with Post-Execution
Adjustment, where the output is also processed
as necessary to achieve the required output value
or format.

e Re-Expression via Decomposition and
Recombination, where the input is broken down
into smaller elements and then recombined after
processing to form the desired output.

18 “COMPUTER SCIENCE & ENGINEERING 2009” (CSE-2009), 14-16 MAY 2009, LVIV, UKRAINE

I1l. Multi —Version Software Fault Tolerance
Techniques

Multi-version techniques use two or more versions of
the same software module, which satisfy the design
diversity requirements. For example, different teams,
different coding languages or different algorithms can be
used to maximize the probability that all the versions do
not have common faults. This section covers some of
these “design diversity” approaches to software reliability
and safety(see figure 5).

1-Fecovery Blacks (FeE)

2-H-Version Programmmg (HVT)
Multi Version Teclmiques
3-Dishibuted Recovery Blodks (DREE)

4-N-Zelf Checking Programming (H3CP)

5-Consensus Recovery Blocks (CEE)

f-beceptance Vating (47)

Figure 5. Multi —version software fault tolerance
techniques

[11.1. Recovery Blocks (RcB) Techniques

The Recovery Blocks technique combines the basics of
the checkpoint and restart approach with multiple
versions of a software component such that a different
version is tried after an error is detected (see Figure 6).
Checkpoints are created before a version executes.
Checkpoints are needed to recover the state after a version
fails to provide a valid operational starting point for the
next version if an error is detected. The acceptance test
need not be an output only test and can be implemented
by various embedded checks to increase the effectiveness
of the error detection. Also, because the primary version
will be executed successfully most of the time, the
alternates could be designed to provide degraded
performance in some sense.

Cutpntt

Figure 6. Recovery Block Model

[11.2. N-Version Programming (NVP)
Techniques

The N-version programming techniques resemble the
N-modular hardware redundancy. The block diagram is
shown in Figure 7. It consists of n different software
implementations of a module, executed concurrently.
Each version accomplishes the same task, but in a
different way. The selection algorithm decides which of

the answers is correct and returns this answer as a result
of the modules execution. The selection algorithm is
usually implemented as a generic voter. This is an
advantage over recovery block fault detection mechanism,
requiring application dependent acceptance tests.

Verslon 1

Lypt Version 2 Selectim —p Ouutput

Versionn

Figure 7. N-Version Programming Model

[11.3. N-Self Checking Programming (NSCP)
Techniques

N-Self Checking programming combines recovery
blocks concept with N version programming. The
checking is performed either by using acceptance tests, or
by using comparison. N self-checking programming using
acceptance tests is shown in Figure8. Different versions
of the program module and the acceptance tests AT are
developed independently from common requirements.
The individual checks for each of the version are either
embedded in the code, or placed at the output. The use of
separate acceptance tests for each version is the main
difference of this technique from recovery blocks
approach. The execution of each version can be done
either serially, or concurrently.

w1 —[et |
oz —[ot |

T S
S

Figure8. N Self-Checking Programming using
Acceptance Tests

[—moutput

ntol Swith

[11.4. Distributed Recovery Blocks (DRB)
Techniques

The DRB technique is a combination of distributed
and/or parallel processing and recovery blocks that
provides both hardware and software fault tolerance.
Emphasis in the development of the technique has been
placed on real-time target applications, distributed and
parallel computing systems, and handling both hardware
and software faults. Although DRB uses recovery blocks,
it implements a forward recovery scheme, consistent with
its emphasis on real-time applications.

The techniques architecture consists of a pair of self-
checking processing nodes (PSP). The PSP scheme uses
two copies of a self-checking computing component that
are structured as a primary-shadow pair, resident on two
or more networked nodes(see figure 9).

“COMPUTER SCIENCE & ENGINEERING 2009” (CSE-2009), 14-16 MAY 2009, LVIV, UKRAINE 19

Predecessor coinputing station

Data

x l
Tnitia] primary node
I
BUCCessOr Cotmpting

AT: Acceptance test
DB: thfabaseCE i D Indtial first try blods
5 B
F Faichc;is |:| Iritial second try block

Figure 9. Distributed Recovery Block structure.

[11.5. Consensus Recovery Blocks (CRB)
Techniques

The CRB technique, combines RcB and NVP
implementation techniques. CRB uses n variants, as in
ReB, in order of their service and reliability. The n
variants are first run concurrently in NVP fashion, and
their results are checked by a voter.

If the voter does not determine a correct result, then the
results of the highest ranked variant are submitted to the AT.
If that variant’s results fail the AT, then the next highest
ranked variant’s results are sent to the AT, and so on, until an
acceptable result passes the AT or no variants are left. In the
RcB part of the CRB technique, the existing results of
variant execution, that is, the ones that just failed to result in
a majority decision, can be run through the AT, or, if a
transient failure is likely, the variants can be run again prior
to submitting their results to the AT.

I11.6. Acceptance Voting (AV) Techniques

The AV technique uses both an AT and a voting-type
DM, along with forward recovery to accomplish fault
tolerance. In AV, all variants can execute in parallel. The
variant results are evaluated by an AT, and only accepted
results are sent to the voter. Since the DM may see
anywhere from 1 to n (where n is the number of variants)

results, the technique requires a dynamic voting
algorithm. The dynamic voter is able to process a varying
number of results upon each invocation. That is, if two
results pass the AT, they are compared. If five results
pass, they are voted upon, and so on. If no results pass the
AT, then the system fails. It also fails if the dynamic voter
cannot select a correct result.

IV.Conclusions

In this paper we have presented a review of software fault
tolerance. We gave a brief overview of the software
development processes and noted how hard-to-detect design
faults are likely to be introduced during development. For
some applications software safety is more important than
reliability, and fault tolerance techniques used in those
applications are aimed at preventing catastrophes. Because
of our present inability to produce error-free software,
software fault tolerance is and will continue to be an
important consideration in software systems. Current
research in software engineering focuses on establishing
patterns in the software structure. It is expected that software
fault tolerance research will benefit from this research by
enabling greater predictability of the dependability of
software.

References

[1] Wilfredo Torres-Pomales, Software Fault Tolerance:
A Tutorial, NASA, Langley Research Center, 2000.

[2] Laura L. Pullum, Software Fault Tolerance Techni-
ques and Implementation, Artech House, INC.,
Norwood, 2001.

[3] Elena Dubrova, Fault Tolerant Design; An Introduction
Draft., Kluwer Publishers, London, 2007.

[4] Hecht H., Fault Tolerant Software for Real-Time
Applications, ACM Computing Surveys, Vol.8, No.4.

[5] Zaipeng Xie, A Survey of Fault Tolerance
Techniques, University of Wisconsin-Madison.

[6] Avizienis,A.,Fault Tolerance by Design Diversity,
IEEE Computer.

[7] K.H. KIM, The Distributed Recovery Block Scheme,
university of California, Software Fault Tolerance,
1995.

[8] Brian Randell, Software Fault Tolerancy, University
of Newcastel Tyne, John Wiley & Sons Ltd,
England, 1995.

20 “COMPUTER SCIENCE & ENGINEERING 2009” (CSE-2009), 14-16 MAY 2009, LVIV, UKRAINE

