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Abstract: This paper involves a new conceptual 
methodology for improving the quality indices of vector 
information technologies (e.g. vector data coding) with 
respect to performance reliability, transmission speed, 
and functionality, using novel designs based on vector 
combinatorial configurations such as cyclic groups in 
extensions of Galois fields, difference sets and novel 
vector combinatorial constructions. Research into 
combinatorial structures of two- and higher 
dimensionality makes it possible to configure vector 
information systems based on the idea of an optimal  
placement of structural elements in the systems. These 
design techniques allow information to be presented, 
processed, transfered, and transmited as two- or 
multidimensional vector data flows with fewer base 
elementsю. The aim is to imploy the appropriate 
algebraic techniques to improve the technological 
efficiency making use of the applicable properties of 
interconnections of two- and multi-modular vector cyclic 
groups, and inter-convertible dimensionality of the 
vector information systems. The paper contains some 
examples of the minimization related to the optimal 
placement of structural elements in a spatially or 
temporarily distributed information system, including its 
application to the design of coded signals for 
communications and radar, and positioning the elements 
in antenna arrays. 

Key words: V-algebra, multi-modular IRBs structure, 
antenna array, optimal monolithic code, optimal vector 
data coding, three-modular system of coordinates, 
optimal vector information technology.  

1. Introduction  
Combinatorial structures and system optimization 

techniques offer widespread applicability in cybernetics, 
computational technique, radio-communications, and 
related areas of science and engineering, for example, 
design of self-coding encode systems, data transfer, 
development of radio and hydro acoustic systems with 
high resolution, etc. Therefore, the synthesis of 
mathematical models of the systems is important in 
terms of improving the technical characteristics for the 
selected criteria and limitations.  

The mathematical models of synthesis, and 
optimization of information systems reveal the main 
approaches to and methodology of constructing devices 
and systems with improved technical indicators of 
reliability, immunity and cryptography applying 
combinatorial models and methods of the systems 
involving the mathematical apparatus of combinatorial 
analysis [1], theory of algorithms, theory of numbers, 
matrix calculus, and elements of the algebraic theory of 
Galois fields [2].    

2. The analysis of recent researches and 
publications 

The general problem of system optimization relates 
to finding the best placement of its structural elements 
and events. The research into the specified mathematical 
area involves the appropriate algebraic structures, such 
as finite fields and groups in extensions of Galois fields, 
and difference sets [1, 2]. In modern mathematics, the 
theory of fields (or field theory) plays an essential role in 
the number theory and algebraic geometry [3–7]. Perfect 
fields [4] are significant because Galois theory over 
these fields becomes simpler, since the general drfinition 
of Galois field extensions being separable is 
automatically satisfied over these fields.  

It is now accepted that a mathematical model be 
used to describe objects in a t-dimensional space. The 
topology of the surface is superior to geometry for 
describing such a phenomenon because it deals with 
much more sophisticated and much deeper spatial and 
temporal relationships. Other scientists have also 
suggested that the entire universe may be shaped like a 
torus [7]. The major branch of geometry is the study of 
geometrical structures on manifolds. A manifold is a 
curved space of some dimension. The concept of a 
manifold [8] is central to many parts of geometry and 
modern mathematical physics because it allows more 
complicated structures to be described and understood in 
terms of the relatively well-understood properties of 
Euclidean space. A one-dimensional manifold includes 
lines and circles, but not a figure-of-eight. Two-
dimensional manifolds are also called surfaces [8].  
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The proposed in article [9] method of adaptive data 
transmission in telecommunication access networks with 
a combined modulation type ensures the lowest possible 
bit error rate during data transmission at some signal-to- 
noise ratio. In the research paper [10] a simulation model 
called Verilog of the Analogue Mixed-Signal (Verilog-
AMS) with the comp-drive sensing element of an 
integrated capacitive micro- accelerometer is developed. 
This model allows the reaction of the sensing elements 
to be simulated. They are effected by the applied force of 
acceleration resulting in the change in their comb-drive 
capacities, output voltages and currents for determining 
their constructive parameters and analyzing the system 
of a mechanical module of the integrated device, 
precision being very important indices for these models.  

The research into various aspects of the subject are 
aimed at finding optimal solutions to a wide class of 
technological problems employing the properties of 
different combinatorial structures on sequences, which 
are based on the principle of connectedness. The 
research paper [11] suggests considering the models of 
discrete systems as mathematical objects, the elements of 
and operations on which are related to the topology 
structure of the base set. This approach follows from the 
nature of the formation and development of natural 
systems.  A viazanka (Ukr.) or a bundle (Eng.) is an 
ordered sequence that is the base set for defining a set of 
operations. A viazanka-object consists of two sets (a set 
of elements and a set of operations), the operations on 
the set of elements being performed consistently over the 
elements. This is the effect of usual connectedness: only 
any directly related mathematical, physical or biological 
objects are subject to transactions. The concept quite 
adequately fits the definition of V-algebra (from 
“viazanka”). The narrower classes of the structures can 
be formed from the general definition of V-algebra by 
introducing additional restrictions. One-dimensional  
V-algebra contains elements that are one-dimensional 
mathematical objects (numbers, segments, 1D vectors, 
angular distance, etc.), and those of higher 
dimensionality are the vectors of a respective dimension. 

We can see a remarkable progress in developing 
innovative techniques for systems optimization, as well as 
combinatorial sequencing theory, namely the concept of 
one- and multidimensional Ideal Ring Bundles (IRBs) [11]. 
The concept of IRBs can be used for finding optimal 
solutions to a wide class of technological problems.  

A new vision of this concept brings closer to 
unraveling its role in the laws of harmonious correlation 
of geometric symmetry and asymmetry, provides a better 
understanding of the idea of "perfect" сombinatorial 
structures to apply this concept to the progressive vector 
information technologies and optimization of multi-

dimensional systems based on the multi-modular 
combinatorial configurations theory [12]. 

3. Objectives 
The objective of the underlying concept is the 

development of a new methodology in system 
engineering for improving the quality indices of 
engineering devices, systems or technologies with non-
uniform structure (e.g. planar antenna arrays of radio 
antennas) with respect to performance reliability, 
transformation speed, position(al) precision and resolu-
tion. We use novel designs based on multi-modular 
combinatorial configurations such as two- and multi-
dimensional Ideal Ring Bundles. These design 
techniques make it possible to configure systems with 
fewer elements than usual maintaining or improving 
resolution and other significant operating characteristics 
of engineering devices and technological systems, 
namely vector data coding of signals for 
communications and radars, signal processing and 
reconstruction, and low-side lobe antenna design. 

4. The main research results  
The concepts in the algebraic studies of properties of 

different combinatorial structures on sequences can be 
seen to be always arbitrary formations, which are based 
on the principle of connectedness. The research paper 
[11] suggests considering the models of discrete systems 
as mathematical objects, the elements of and operations 
on which are related to the topology structure of the base 
set. This approach follows from the nature of the 
formation and development of natural systems, including 
genetic structures. 

Let us calculate all Sn sums of the terms in a 
numerical n-stage chain sequence of distinct positive 
integers { }1 2,  ,..., ,...,  n i nK k k k k= , where all the terms 
in each sum are required to be consecutive elements of 
the sequence. It is clear that the maximum sum is the 
sum  Smax of all the n  elements: 

 1 2     ... ...max i nS k k k k= + + + + + . (1) 
A sum of consecutive terms in a chain sequence can 

have any of the n terms as its starting point pj, and 
finishing point qj  , and can be of any length (the number 
of terms) from 1 to n. Thus, each  j-th  numerical pair 
(pj,qj), { }, 1, 2, , j jp q n∈ …  corresponds to the sum 

( )   ,j j jS S p q= , is as follows: 

 ( ) ,  , 
j

j

q

i
i p

j j j j jS S p q p qk
=

= ⋅ = ≤∑ , (2) 

An ordered numerical pair (pj,qj) determines  a  sum 
S(pj,qj) in a numerical n-stage chain sequence, and is a 
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numerical code of the sum. All the sums of the consecutive 
terms of the sequence { }1 2,  ,..., ,...,  n i nK k k k k= , are 
shown in Table 1. 

Table 1 
Sums of consecutive terms in ordered-chain sequence 

{ }1 2 ,  ,..., ,  ...,  n nK k k ki k=  

qj pj 
1 2 ... n-1 n 
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From this Table we can see that the maximum 

number of distinct sums is  

 ( )'  1 2 ... 1 / 2maxS n n n= + + + = + . (3) 
The “ideal” ordered-chain sequence is such a 

numerical n-stage sequence of distinct positive integers  
k1, k2, ..., kn, , which exhausts the natural row of 
numbers wrote down into the cells of Table 1.  Table of 
the sums of consecutive terms in an ordered-chain 
sequence gives a solution for finding an optimal 
arrangement of structural elements in a chain topology 
information system in terms of system resolution (e.g. 
linear arrays of radio astronomy antennas). 

The sums of consecutive terms in the ordered-chain 
numerical sequence {1,3,2}, where k1 = 1, k2 = 3, k3 =  2 
are given in Table 2.  

Table 2 
Sums of consecutive terms  

in ordered-chain sequence {1, 3, 2} 

qj pj 
1 2 3 

1 k1=1 2

1
4i

i
k

=

=∑  
3

1
1 3 2 6i

i
k

=

= + + =∑  

2  k2=3 3

2
3 2 5i

i
k

=

= + =∑  

3   k3=2 
 

If the chain sequence Kn is regarded as being cyclic 
so that the element kn is followed by k1 , it can be called a 
ring sequence.  A sum of consecutive terms in a ring 
sequence can have any of the n terms as its starting point 

pj, and finishing point qj , and can be of any length (the 
number of terms) from 1 to  n-1. In addition, there is a 
sum Sn of all n terms, which is the same regardless of the 
starting point.  

The Table of the sums of consecutive terms in the 
ordered-ring sequence { }1 2,  ,..., ,...,  n i nK k k k k=  is 
given below (Table 3). 

Table 3 
Sums of consecutive terms in ordered-ring sequence 

{ }1 2 ,  , , ... , ,  ...,  n i nK k k k k=  
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A sum of consecutive terms in a ring sequence can 

have any of the n terms as its starting point pj, and 
finishing point qj, and can be of any length (the number 
of terms) from 1 to n-1.  So, each  j-th  numerical pair 
(pj,qj), { }, 1, 2, , j jp q n∈ … , corresponds to the sum 

   ( , )j j jS S p q= , and can be calculated by the equation 

below if   j jp q≤ : 

 ( )  ,
j

j
j j j

q

i
i p

S S p q k
=

= = ∑ . (4) 

In case   j jp q> , a ring (circular) sum can be 

calculated by formula (5) 

 ( )
1

  ,  
j

j

q n

j j j i i
i i p

S S p q k k
= =

+= = ∑ ∑ . (5) 

It is easy to see from Table 3 that the maximum 
number of distinct circular sums Sn of the consecutive 
terms of the ring sequence is  

 ( )1  1nS n n= − + . (6) 
Comparing equations  (3) and (6), we see that the 

number of sums Sn  for  the consecutive terms in a ring 
topology is nearly twice as many as the number of sums  
S'

max  in the daisy-chain topology,  for the same sequence 
Kn  of  n  terms. 

39

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua



Volodymyr Riznyk 

 

An n-stage ring sequence { }1 2 , , ... , , ..., n i nK k k k k=   

of the natural numbers for which a set of all Sn circular 
sums consists of the numbers from 1 to 

( )1 1nS n n= − + , that is each number occurs exactly 
once, is called an “Ideal Ring Bundle” (IRB). 

An example of a numerical ring sequence with n = 4 
and ( )1 1 13nS n n= − + = , where k1 = 1, k2 = 3, k3 = 2, 

and k4=7 is given below (Table 4).  
Table 4 

Circular sums for numerical ring sequence   {1, 3, 2, 7} 

qj pj 
1 2 3 4 

1 1 4 6 13 
2 13 3 5 12 
3 10 13 2 9 
4 8 11 13 7 

 
Table 4 is calculated in a similar way that the one 

above, i.e. by using equations (4) and (5). Table 4 
contains a set of all ( )1 1 13nS n n= − + =  sums of 

consecutive elements of the 4-stage (n = 4) ring sequence 
{1,3,2,7}, and each sum from 1 to n-1 occurs exactly 
once (R = 1). So, the ring sequence {1,3,2,7} is a one-
dimensional  Ideal Ring Bundle  (1D-IRB) with the 
parameters n = 4 and R = 1.  

Here is a graphic presentation of a one-dimensional 
Ideal Ring Bundle (1-D IRB) containing four (n=4) 
elements {1, 3, 2, 7} (Fig. 1). 

 
Fig. 1. Graph of one-dimensional Ideal Ring Bundle (1D-IRB) 

containing four (n=4) elements {1, 3, 2, 7}. 

It is generally known that there exists the endless 
number of IRBs, and the more number of intersections n 
is in an IRB, the more number of IRBs are [11]. The idea 
of “perfect” numerical bundles provides the development 
and design of two- and multidimensional Ideal Ring 
Bundles (IRBs).  

Let us consider an n-stage ring sequence 

( ) ( ) ( ) ( ){ }2D 11 12 21 22 i1 i2 n1 n2, , , , ..., , , ..., ,K k k k k k k k k= , 

where all terms in each circular vector sum are required 
to be consequtive 2-stage sequences as the elements of 
this sequence. A circular vector-sum of the consequtive 
terms in this ring sequence can have any of the n terms 
as its starting point, and can be of any length from 1 to 

n-1. The n-stage ring sequence K2D , for which the set 
of all  

 ( )2   1DS n n= − , (7) 
two-modular  vector-sums (mod m1, mod m2) forms a 
two-dimensional grid over a torus m1 × m2, where each 
node of the grid occurs exactly R-times, is called a 
two-dimensional Ideal Ring Bundle (2D–IRB) with  
parameters n, R, and m1 , m2 .   

Next, we consider a two-dimensional IRB with four 
(n = 4) terms of ring topology, where ( )1 0,1 , k =  

( ) ( ) ( )2 3 4 1,3 , 0,2 ,  2,3k k k= = = , the graph of which 
is depicted below (Fig. 2).  

 
Fig. 2. Graph of 2D-IRB {(0,1), (1,3), (0,2), (2,3)};  

n = 4, R = 1, m1 = 3, m2 = 4. 

We can easily calculate all circular two-dimensional 
vector-sums, modulo m1 = 3 for the first components of 
the vector-sums and modulo m2 = 4 for the second ones: 

(0,0)≡(1,3)+(0,2)+(2,3);  
(1,0)≡(0,1)+(1,3)+(1,1)+(1,2); 

(0,1);                                (1,1)≡(1,3)+(0,2); 
(0,2);                

(1,2)≡(0,1)+(1,3)+(0,2); 
(0,3)≡(2,3)+(0,1)+(1,3);   (1,3); 

 
 (2,0)≡(2,3)+(0,1); 
(2,1)≡(0,2)+(2,3); 
(2,2)≡(0,2)+(2,3)+(0,1); 
(2,3). 

As the elements (0,1), (1,3), (0,2), (2,3) of a ring 
sequence, by themselves, are also circular vector-sums, 
the circular vector-sums set  is as follows: 

 (0,0)     (0,1)     (0,2)     (0,3) 
            (1,0)     (1,1)     (1,2)     (1,3) 
            (2,0)     (2,1)     (2,2)     (2,3) 
The result of the calculation forms a two-

dimensional grid over the torus 3 × 4, where 2D modular 
coordinates of each node of the grid occurs exactly once 
(R=1). So, the ring sequence of the 2D vectors {(0,1), 
(1,3), (0,2), (2,3) is a two-dimensional Ideal Ring Bundle 
(2D-IRB) with  n = 4, R = 1, m1 = 3, m2 = 4. 

The problem of structural optimization of radar or 
sonar systems relates to finding the best placement of its 
structural elements in spatially distributed systems, as 
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well as a better understanding of the role of geometric 
structure in the behavior of the systems. The research 
into this specified mathematical area involves the 
appropriate algebraic constructions based on finite 
groups in extensions of Galois fields [2].  

Classical theory of combinatorial configurations can 
hardly be expected effective for constructing 2D or 3D 
antenna arrays of high resolution for radar or sonar 
systems, as well as for finding the optimal solutions to 
other problems related to constructing such systems with 
low side lobe antenna. So, for such problems to be 
optimally solved, there is a need for an advanced theory 
and regular method. 

The application of algebraic constructions and modern 
combinatorial analysis provides the optimal solution to 
many problems of high-resolution interferometry for radar, 
data communications, and signal design [11, 12]. The 
regular methods for constructing the non-redundant two- 
and three-dimensional n-element antenna arrays, based on 
2D or 3D IRBs are proposed in [11], while the optimal 2D 
and 3D coding design is suggested in [12].  

Here is an example of constructing a planar antenna 
array configuration based on a two-dimensional IRB 
with the parameters 1 213, 4, 5, =8n R m m= = = , where 

1 2 5 8 40S m m= × = × = , which can be reconstructed 

into an antenna array over 5 × 6 = 30 grids (Fig. 3). 

 
Fig. 3. Antenna array over 5 × 6 grids reconstructed 

 from the array over 5 × 8 grids based on the 2D IRB. 

The solution we need can be found after constructing the 
2D matrix of all circular two-dimensional vector-sums on the 
2D IRB, with each of them being considered with regard to 
finding minimum of the sum by using crossing out as 
depicted in Fig. 3. These methods make it possible to obtain 
planar antenna array configurations having lower peak 
sidelobe levels than the existing ones and thus maintain or 
improve their resolution.   

For any two-dimensional phased antenna array 
configurations, the antenna or sensor elements are 
positioned in a manner as prescribed by the appropriate 
2D Ideal Ring Bundle. The considerable collection of the 

2D IRB sets found also contributes to the obtaining of 
optimized planar antenna arrays with much more 
elements than the currently existing ones, having the low 
peak sidelobe levels. 

The antenna or sensor elements positioned in a manner 
as prescribed by the underlying combinatorial technique 
make it possible to configure systems, using the appropriate 
variant of 2D IRB for constructing the radar or sonar planar 
antenna arrays. The search algorithm is employed  to find the 
optimal solution in the simplest way based on the appropriate 
matrix of circular two-dimensional vector-sums on the 
suitable 2D IRB, as well as on the crossing out operations. 
Clearly, we keep to the known relationships between the grid 
sizes and parameters of a working range to configure a radar 
or sonar system. 

A three-dimensional Ideal Ring Bundle (3D IRB) is 
an n-stage ring sequence of 3-type sub-sequences of the 
sequence, which forms the “perfect” 3- axis vector-space 
coordinate system of a finite 3-modular toroidal 
manifold over the m1 × m2 × m3 grid. The solution 
needed consists in the construction of a 3D matrix based 
on the appropriate 3D IKB, for which a set of all  
3-modular (mod m1, mod m2, mod m3) circular sums 
enumerate a set of node coordinates over a 3-modular 
manifold exactly R-times. The ring sequence 

( ) ( ) ( ){ }3D 11 12 13 21 22 23 n1 n2 n3, , , , , , ..., , ,K k k k k k k k k k=  

of 3D terms is cyclic, so that (kn1, kn2, kn3) is followed by (k11, 
k12, k13). A sum of consecutive terms in the 3D ring sequence 
can have any of the n  terms as its starting point, and can be 
of any length, with the condition being kept to:  

 ( )1 2 3, , 1 m m m = . (8) 
Such a model makes it possible to configure a  

3-modular    (mod m1, mod m2, mod m3) toroidal 
manifold over the m1 × m2 × m3 grid, each nodal 
coordinate of the grid occuring exactly R-times.  

For example, a ring ordered 6-stage (n = 6) sequence 
of 3-stage (3D) terms {(0,1,4), (0,2,4), (1,1,1), (1,1,2), 
(1,0,3), (0,2,2)} allows a 3-modular (mod2, mod3,mod5) 
manifold to be configured over the 2 × 3 × 5 grid, based 
on this 3D IRB. The set of all circular 3-modular vector 
sums m1 = 2, m2 = 3, m3 = 5 enumerates the set of the 
grid nodes exactly once (R=1): 

(0,0,1) ≡ (0,2,2) + (0,1,4)  
(0,0,2) ≡ (1,1,2) + (1,0,3) 
(0,0,3) ≡ (0,1,4) + (0,2,4) 
(0,0,4) ≡ (1,0,3) + (0,2,4) + (0,1,4) + (0,2,4) + (1,1,1) 

……………………………………………… 
......................................................................... 
Finally, 
(0,0,0) ≡ (0,1,4) + (0,2,4) + (1,1,1) + (1,1,2) + 

+ (1,0,3) + (0,2,2). 
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A more general type of the “perfect” combinatorial 
configurations are t-dimensional Ideal Ring Bundles as 
an n-stage ring sequence {(k11, k21, ... kt1), (k12, k22, ..., 
kt2), ... (k1n , k2n, ..., ktn)}. The t-D IRB allows a set of the 
nodal coordinates of circular t-modular (mod m1, mod 
m2, …, mod mt) vector sums on the m1 × m2 ×...× mt  grid 
of a toroidal manifold to be enumerated exactly R- times.  

The graphical model of a t-D IRB is given below 
(Fig. 4). 

 
Fig. 4. Graphical model of  t-D IRB. 

The traditional methods for vector data coding are not 
always applicable because the optimization technique that 
could be used to solve such a problem requires revision of 
many options. To solve the problem, the property of  
t-dimensional IRB can be assumed as a basis  of the design 
of an optimal t-dimensional binary monolithic IRB-code 
[12]. The underlying code forms a set of combinations from 
the same consecutive symbols in each of them.  Here are 
the examples of four-stage (n = 4) code words of the 
Monolithic binary ring code: 0000, 

0001, 0010, 0100, 1000,  
0011, 0110, 1100, 1001, 
0111, 1110, 1101, 1011  
For example, the two-dimensional IRB {(0,1), 

(1,3), (0,2), (2,3)} provides a possibility of configuring 
the optimal t-dimensional Monolithic IRB-code as 
follows (Table 5). 

Table 5  
2D-ІRB Monolithic Code {(0,1),(1,3), (0,2), (2,3)} 

Cyclic binary digits Vector 
(0,1) (1,3) (0,2) (2,3) 

(0,0) 0 1 1 1 
(0,1) 1 0 0 0 
(0,2) 0 0 1 0 
(0,3) 1 1 0 1 
(1,0) 1 1 0 0 
(1,1) 0 1 1 0 
(1,2) 1 1 1 0 
(1,3) 0 1 0 0 
(2,0) 1 0 0 1 
(2,1) 0 0 1 1 
(2,2) 1 0 1 1 
(2,3) 1 0 0 0 

Table 5 contains all binary code combinations of 2D 
IRB Monolithic Code {(0,1), (1,3), (0,2), (2,3)} from 
(0,0) to (2,3) obtained in  only one way. 

5. Perfect multi-modular coordinate system 
Let us regard a chain n-sequence of non-negative 

integer 3-stage sub-sequences of the sequence {(k11, k12, 
k13), (k21, k22, k23),  ...  , (ki1, ki2, ki3),  ... , (kn1, 
kn2,kn3)} as being cyclic, so that (kn1, kn2, kn3) is followed 
by (k11, k12, k13), we call this a three-dimensional ring n-
sequence. 

Here we obtain next 3-modular sums of the 
connected sub-sequences of a three-dimensional ring n-
sequence, and modulo m1, m2, and  m3 summations are as 
follows: 
(k11, k12, k13) + (k21, k22, k23) ≡ ((k11 + k21)(mod m1),  
(k12 + k22)(mod m2), (k13 + k23)(mod m3);  
(k21,, k22 ,k23) + (k31,, k32 , k33) ≡ ((k21+k31)(mod m1),  
(k22+ k32)(mod m2),(k23 +k33)(mod m3));  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
(k11, k12, k13) + (k21, k22, k23) + (k31, k32, k33) ≡ ((k11 + k21 + 
+ k31) (mod m1), (k12+ k22+ k32)(mod m2), (k13 + k21 + 
+ k33)(mod m3));  
 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
(k11, k12, k13) + (k21, k22, k23)+  ...  + (ki1, ki2, ki3) +  ... + 
+(kn1, kn2, kn3) ≡ ((k11 + k21 + …+ ki1 +…+ kn1)(mod m1), 
(k12 + k22 + …+ ki2 +…+ kn2)(mod m2), (k13  + k23 + …+ ki3 + 

+…+ kn3)(mod m3)).  
So, we configure a 3-modular m1 × m2 × m3  cyclic 

matrix as a coordinate axis system based on the ring  
n-sequence {(k11, k12, k13), (k21, k22, k23),  ...  , (ki1, ki2, ki3),  
... , (kn1, kn2,kn3)}.  

The three-modular (mod m1, mod m2, mod m3) 
system of coordinates being the product of three circles 
is useful in visualizing (Fig. 5). 

 
Coordinate axis frame modulo m1 

 

 
Coordinate axis frame   
modulo m3 

 

     • 
(0,0,0) 

Coordinate axis 
frame modulo m2 

 

 
Fig. 5. Three-modular (mod m1, mod m2, mod m3) system of 

coordinates with ground coordinate (0,0,0). 
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The ring n-sequence {(k11, k12, k13), (k21, k22, k23),  
..., (ki1, ki2, ki3),  ..., (kn1, kn2, kn3)}, for which a set of 
all 3-modular sums occurs in an enumeration set of node 
points space coordinate system  m1 × m2 × m3 exactly 
R times, is called a perfect 3-modular vector ring. The 
three-modular coordinate systems of n-stage perfect 
rings are based on their useful property to create a non-
redundant three-modular cyclic system of coordinates 
with a ground coordinate (0,0,0) over the torus (n-1) × 
× n = m1 × m2× m3.  

Here is an example of the 3-modular sequence with 
n = 6, m1 = 2, m2 = 3, m3 = 5, and R = 1, which contains 
six (n = 6) 3-stage  sub-sequences of the sequences: 
{(0,2,3), (1,1,2), (0,2,2), (1,0,3), (1,1,1), (0,1,0)}. 

The set of all circular sums over the 6-stage 
sequence, 3-tuple modulo (mod2, mod3, mod5) gives the 
following model of the 3-modular manifold topology 
system: 

 
(0,0,0) ≡{(0,2,3) + (1,1,2)+ (0,2,2)+(1,0,3)+ (0,1,0)}  
(0,0,1) ≡{(0,2,2) + (1,0,3) + (1,1,1)}  
(0,0,2) ≡{(1,1,2) + (0,2,2) + (1,0,3)} 
(0,0,3) ≡ {(0,2,3) + (0,1,0)}  
(0,0,4) ≡ {(0,2,2) + (1,0,3) + (1,1,1) + (0,1,0) + (0,2,3)}  
(0,1,1) ≡ {(0,2,2)+ (1,0,3) + (1,1,1) + (0,1,0)}  
(0,1,2) ≡ ((1,0,3)+ (1,1,1) + (0,1,0) + (0,2,3)),   
(0,1,3) ≡ {(1,1,1)+ (0,1,0)+ (0,2,3)+(1,1,2)+ (0,2,2)}  
(0,1,4) ≡ {(0,1,3) + (1,1,1)}  
(0,2,0) ≡ {(0,2,3)+ (1,1,2) + (0,2,2) + (1,0,3)}  
(0,2,1) ≡ {(1,1,1)+ (0,1,0) + (0,2,3) + (1,1,2)} 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
     Finally, (1,2,4) ≡ {(0,2,3) +(1,1,2) +(1,1,1)+  
+ (1,0,3)+ (0,1,0)}.  

The maximum number Smax = m1 · m2 · m3 = 30 of 
such sums is fixed exactly once (R=1), and the set of all 
3-modular  (2, 3, 5) sums enumerates a set of node 
points space coordinate system  m1 × m2 × m3. 

The optimum t-modular relationship is the n-stage 
ring sequence Cn3 = {(k11, k12, k13), (k21, k22, k23),  ..., 
(ki1, ki2, ki3),  ... , (kn1, kn2,kn3)} of non-negative integer 
t-stage sub-sequences (tD vectors) of the sequences as 
being a cyclic proportion of the n three-dimensional 
vectors. Note, the optimal t-modular relationship is a 
non-redundant system with respect to partitioning tD 
space with the smallest possible number of intersections. 

An example of an optimum 3-modular (t=3) 
relationship follows from the perfect ring {(0,2,3), 
(1,1,2), (0,2,2), (1,0,3), (1,1,1), (0,1,0)}. This optimal  
3-modular relationship (0,2,3) : (1,1,2) : (0,2,2) : 
(1,0,3) : (1,1,1) : (0,1,0) contains six (n = 6) 3D vectors as 

a cyclic group in a finite field, and forms a complete set 
of 3D vectors over the 3-modular manifold grid. 

The applications profiting from the code are 
compression, signal reconstruction, operation speed, and 
security. 

The underlying multidimensional models make it 
possible to apply the concept of  Ideal Ring Bundles to 
the configuration of high-performance vector data 
information technologies and communication systems, 
based on the combinatorial techniques, with the direct 
applications to elements positioning in an antenna array, 
and design of coded signals for communications.  

6. Conclusions 
The multi-modular Ideal Ring Bundles (IRB) 

provides a new conceptual methodology for improving 
the quality indices of vector information technologies 
(e.g. vector data coding) with respect to performance 
reliability, transmission speed, and functionality, using 
novel designs based on the IRB. The applicable property 
and structural perfection of one- and multidimensional 
IRBs provides the new mathematical principles relating 
to the optimal placement of structural elements in 
spatially or temporally distributed systems. This property 
makes the underlying methodology useful for finding the 
optimal solutions to  a wide class of problems in the field 
of information technologies, including applications in 
the design of coded signals for communications and 
radars, positioning of elements in an antenna array, and 
vector data processing. The useful applications of the 
multi-modular IRBs theory are for example, non-
redundant aperture, low-side lobe antenna arrays, and 
self-correcting vector data coding. The two- and 
multidimensional Ideal Ring Bundles can be well used 
for configuring the high performance vector data 
information technologies and spatial control systems. 
Spatial perfection and structural harmony exist not only 
in the abstract models but in the real world as well.   
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МУЛЬТИМОДУЛЯРНА ОПТИМІЗАЦІЯ 
ІНФОРМАЦІЙНИХ ТЕХНОЛОГІЙ  

Володимир Різник  

Розглянуто нову концепцію в методології покращення 
якісних показників векторних інформаційних технологій 
(наприклад, кодування векторних даних) стосовно на-
дійності, швидкості пересилання даних та функціональних 
можливостей, використовуючи інноваційні розробки на 
основі векторних комбінаторних конфігурацій, таких як 
циклічні групи в розширених полях Ґалуа, різницеві 
множини та новітні векторні комбінаторні конструкції. 
Дослідження двовимірних та комбінаторних структур 
вищої розмірності дає змогу створювати векторні 
інформаційні системи на основі ідеї вигідного розміщення 

структурних елементів у цих системах. Цей метод 
проектування дає змогу представляти, опрацьовувати, 
перетворювати та пересилати інформацію у вигляді дво- 
або багатовимірних векторних потоків даних з меншою 
кількістю базових елементів, ніж тепер. Мета полягає у 
використанні відповідних алгебричних методів для покра-
щення технологічної ефективності, використовуючи ко-
рисні властивості взаємозв’язків дво- й багатомодулярних 
векторних циклічних груп та здатність конвертування 
розмірності векторних інформаційних систем. Стаття 
містить кілька прикладів мінімізації, пов’язаних з опти-
мальним розміщенням структурних елементів у просто-
ровій або часово розподіленій інформаційній системі, 
зокрема застосування для розроблення кодованих сигналів 
для зв’язку і радіолокаційних сигналів та розміщення 
елементів в антенних решітках. 
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