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Abstract: This paper involves a new conceptua
methodology for improving the quality indices of vector
information technologies (e.g. vector data coding) with
respect to performance reliability, transmission speed,
and functionality, using novel designs based on vector
combinatorial configurations such as cyclic groups in
extensions of Galois fidds, difference sets and novel
vector combinatoria constructions. Research into
combinatorial  structures  of two- and higher
dimensionality makes it possible to configure vector
information systems based on the idea of an optimal
placement of structural elements in the systems. These
design techniques allow information to be presented,
processed, transfered, and transmited as two- or
multidimensional vector data flows with fewer base
elementsio. The aim is to imploy the appropriate
algebraic techniques to improve the technological
efficiency making use of the applicable properties of
interconnections of two- and multi-modular vector cyclic
groups, and inter-convertible dimensiondity of the
vector information systems. The paper contains some
examples of the minimization related to the optimal
placement of structural elements in a spatialy or
temporarily distributed information system, including its
application to the design of coded signals for
communications and radar, and positioning the el ements
in antenna arrays.

Key words V-agebra, multi-modular IRBs structure,
antenna array, optimal monalithic code, optima vector
data coding, threeemodular system of coordinates,
optimal vector information technol ogy.

1. Introduction

Combinatorial structures and system optimization
techniques offer widespread applicability in cybernetics,
computational technique, radio-communications, and
related areas of science and engineering, for example,
design of sdf-coding encode systems, data transfer,
development of radio and hydro acoustic systems with
high resolution, etc. Therefore, the synthesis of
mathematical models of the systems is important in
terms of improving the technical characterigics for the
selected criteriaand limitations.

The mathematicll models of synthesis, and
optimization of information systems reveal the main
approaches to and methodology of constructing devices
and systems with improved technica indicators of
reliability, immunity and cryptography applying
combinatoriad models and methods of the systems
involving the mathematical apparatus of combinatorial
andysis [1], theory of algorithms, theory of numbers,
matrix calculus, and elements of the algebraic theory of
Galoisfidds[2].

2. The analysis of recent researches and
publications

The general problem of system optimization relates
to finding the best placement of its structural elements
and events. The research into the specified mathematical
area involves the appropriate algebraic structures, such
as finite fields and groups in extensions of Galais fields,
and difference sets [1, 2]. In modern mathematics, the
theory of fields (or field theory) plays an essential rolein
the number theory and agebraic geometry [3—7]. Perfect
fields [4] are significant because Galois theory over
these fields becomes simpler, since the general drfinition
of Galois fiedd extensons being separable is
automatically satisfied over these fields.

It is now accepted that a mathematical model be
used to describe objects in a t-dimensional space. The
topology of the surface is superior to geometry for
describing such a phenomenon because it deals with
much more sophisticated and much deeper spatial and
temporal relaionships. Other scientists have also
suggested that the entire universe may be shaped like a
torus [7]. The mgjor branch of geometry is the study of
geometrical structures on manifolds. A manifold is a
curved space of some dimension. The concept of a
manifold [8] is central to many parts of geometry and
modern mathematical physics because it allows more
complicated structures to be described and understood in
terms of the reatively well-understood properties of
Euclidean space. A one-dimensional manifold includes
lines and circles, but not a figure-of-eight. Two-
dimensional manifolds are e so called surfaces [8].
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The proposed in article [9] method of adaptive data
transmission in telecommunication access networks with
a combined modulation type ensures the lowest possible
bit error rate during data transmission at some signal-to-
noise ratio. In the research paper [10] a S mulation model
called Verilog of the Analogue Mixed-Signal (Verilog-
AMS) with the comp-drive sensing eement of an
integrated capacitive micro- accelerometer is devel oped.
This mode allows the reaction of the sensing e ements
to be simulated. They are effected by the applied force of
acceleration resulting in the change in their comb-drive
capacities, output voltages and currents for determining
their constructive parameters and analyzing the system
of a mechanical module of the integrated device,
precision being very important indices for these models.

The research into various aspects of the subject are
aimed at finding optimal solutions to a wide class of
technological problems employing the properties of
different combinatorial structures on sequences, which
are based on the principle of connectedness. The
research paper [11] suggests considering the models of
discrete systems as mathematica objects, the elements of
and operations on which are related to the topology
structure of the base set. This approach follows from the
nature of the formation and development of natura
systems. A viazanka (Ukr.) or a bundle (Eng.) is an
ordered sequence that is the base set for defining a set of
operations. A viazanka-object consists of two sets (a set
of elements and a set of operations), the operations on
the set of elements being performed consistently over the
elements. This isthe effect of usual connectedness: only
any directly related mathematical, physical or biological
objects are subject to transactions. The concept quite
adequately fits the definition of V-algebra (from
“viazanka’). The narrower classes of the structures can
be formed from the general definition of V-algebra by
introducing additional restrictions.  One-dimensional
V-algebra contains eements that are one-dimensional
mathematical objects (numbers, segments, 1D vectors,
angular distance, etc.), and those of higher
dimensionality are the vectors of arespective dimension.

We can see a remarkable progress in deveoping
innovative techniques for systems optimization, as well as
combinatorial sequencing theory, namely the concept of
one- and multidimensional Ideal Ring Bundles (IRBs) [11].
The concept of IRBs can be used for finding optimal
solutionsto awide class of technological problems.

A new vision of this concept brings closer to
unraveling itsrole in the laws of harmonious correlation
of geometric symmetry and asymmetry, provides a better
understanding of the idea of "perfect” combinatoria
structures to apply this concept to the progressive vector
information technologies and optimization of multi-

dimensional systems based on the multi-modular
combinatorial configurationstheory [12].

3. Objectives

The objective of the underlying concept is the
development of a new methodology in system
engineering for improving the quality indices of
engineering devices, systems or technologies with non-
uniform structure (e.g. planar antenna arrays of radio
antennas) with respect to performance rdiability,
transformation speed, position(al) precision and resolu-
tion. We use novel designs based on multi-modular
combinatoria configurations such as two- and multi-
dimensional Ideal Ring Bundles. These design
techniques make it possible to configure systems with
fewer eements than usual maintaining or improving
resolution and other significant operating characteristics
of engineering devices and technological systems,
namely vector data coding of signas for
communications and radars, signal processing and
reconstruction, and low-side lobe antenna design.

4. The main resear ch results

The conceptsin the algebraic studies of properties of
different combinatorial structures on sequences can be
seen to be always arbitrary formations, which are based
on the principle of connectedness. The research paper
[11] suggests considering the models of discrete systems
as mathematical objects, the elements of and operations
on which are related to the topol ogy structure of the base
set. This approach follows from the nature of the
formation and development of natural systems, including
genetic gructures.

Let us calculate all S, sums of the terms in a
numerical n-stage chain sequence of distinct positive
integers K, ={k;, K, ....K ..., k.} , whereall the terms

in each sum are required to be consecutive elements of
the sequence. It is clear that the maximum sum is the
sum Sy Of dl then eements:

Srax =K K+ LK LK (1)

A sum of consecutive termsin a chain sequence can
have any of the n terms as its starting point p;, and
finishing point g , and can be of any length (the number
of terms) from 1 to n. Thus, each j-th numerical pair

(oap). P01 {1,2%,n} corresponds to the sum
S, =S( P;,q; ) ,isasfollows:

9
sj:5x(pj,qj)=ii_|q,pj£qj, @

An ordered numerical pair (p;,0) determines a sum
Sp;,g;) in @ numerica n-stage chain sequence, and is a
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numerica code of the sum. All the sums of the consecutive
tems of the sequence K, ={k;, K,,....K ..., K.}, are
shown in Table 1.

Table 1
Sums of consecutive termsin ordered-chain sequence
K, = {k1 K,,...Ki, .., kn}
P; 9
1 2 n-1 n
ke S b 3
! a kl a. ki a kl
i=1 i=1 i=1
k n-1 n
2 ’ é. ki é. k|
i=2 i=2
o1 Kn-1 égl‘ﬁ
i=n-1
n kn

From this Table we can see that the maximum

number of distinct sumsis
Swx = 1+2+..+n=n(n+1)/2. (3

The “ideal” ordered-chain sequence is such a
numerical n-stage sequence of distinct positive integers
ki, Ko, ..., ko, , which exhausts the natural row of
numbers wrote down into the cells of Table 1. Table of
the sums of consecutive terms in an ordered-chain
sequence gives a solution for finding an optimal
arrangement of structural elements in a chain topology
information system in terms of system resolution (e.g.
linear arrays of radio astronomy antennas).

The sums of consecutive terms in the ordered-chain
numerical sequence {1,3,2}, wherek; =1, kb =3, ks = 2
aregivenin Table 2.

Table 2
Sums of consecutive terms
in ordered-chain sequence{1, 3, 2}

Pj 9
1 2 3
1 k=1 oz 3
a|(|:4 aK:1+3+2:6
i=1 i=1
2 k=3 o3
ak=3+2=5
i=2
3 ks=2

If the chain sequence K, is regarded as being cyclic
so that the e ement k,is followed byk;, , it can be called a
ring sequence. A sum of consecutive terms in a ring
sequence can have any of the n terms as its starting point

p;, and finishing point g, and can be of any length (the
number of terms) from 1 to N-1. In addition, thereis a
sum S; of al nterms, which isthe same regardless of the
starting point.

The Table of the sums of consecutive terms in the
ordered-ring sequence K, ={k;, ky,....k ..., K.} is
given below (Table 3).

Table 3
Sums of consecutive termsin ordered-ring sequence
K, = {k1 Kyyy oo Ky sy kn}
P; 9
1 2 . n-1 n
1 ky °2 . r161 nol
a kl a ki a kI
i=1 i=1 i=1
2 n kz . r‘gl g
a ki a ki a k|
i=1 i=2 i=2
n-]_ n n 2 Kn-1 n
é,l(i+k1 éki+é.k| é.ki
i=n-1 i=n-1 i=1 i=n-1
n k,-,+k1 2 n kn
Ko+ @k, ak
i=1 i=1

A sum of consecutive terms in a ring sequence can
have any of the n terms as its starting point p;, and
finishing point @, and can be of any length (the number
of terms) from 1 to n-1. So, each j-th numerical pair

®.9). p;.q; T {L2%,n}, corresponds to the sum
S; =S (p;,q;), and can be calculated by the equation
below if p; £q;:

Sj=5(pj7qj)=,3 ki . (4)

i=p;
In case p;>qQ;, a ring (circular) sum can be
calculated by formula (5)

q; n
S =s(p.g)=ak+ak. (8
i=1 i=p;
It is easy to see from Table 3 that the maximum
number of distinct circular sums S, of the consecutive
terms of the ring sequenceis

S, =n(n-1) +1. (6)

Comparing equations (3) and (6), we see that the
number of sums §, for the consecutive termsin aring
topology is nearly twice as many as the number of sums

Smax in the daisy-chain topology, for the same sequence
K, of n terms.
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An n-gtage ring sequence K = {kl, Ky o Ky Ig]}
of the natural numbers for which a set of all S, circular
sums consists of the numbers from 1 to

S, =n(n- 1) +1, that is each number occurs exactly

once, iscalled an “ldeal Ring Bundl€” (IRB).
An example of anumerical ring sequence with n= 4

and S, =n(n- 1) +1=13, wheek =1, k=3, k=2,
and k4;=7 is given below (Table 4).

Table4
Circular sumsfor numerical ring sequence {1, 3, 2, 7}
Pj 9
1 2 3 4
1 1 4 6 13
2 13 3 5 12
3 10 13 2 9
4 8 11 13 7

Table 4 is calculated in a similar way that the one
above, i.e. by using equations (4) and (5). Table 4
contains a set of al S =n(n-1)+1=13 sums of

consecutive dements of the 4-stage (N = 4) ring sequence
{1,3,2,7}, and each sum from 1 to n-1 occurs exactly
once (R =1). So, the ring sequence {1,3,2,7} is a one-
dimensional Ided Ring Bundle (1D-IRB) with the
paametersn=4and R= 1.

Here is a graphic presentation of a one-dimensional
Ideal Ring Bundle (1-D IRB) containing four (n=4)
edements{1, 3, 2, 7} (Fig. 1).

Fig. 1. Graph of one-dimensional Ideal Ring Bundle (1D-IRB)
containing four (n=4) eements{1, 3, 2, 7}.

It is generally known that there exigs the endless
number of IRBs, and the more number of intersections n
isin an IRB, the more number of IRBsare[11]. Theidea
of “perfect” numerical bundles provides the devel opment
and design of two- and multidimensional Ideal Ring
Bundles (IRBS).

Let us consider an n-stage ring sequence

Koo ={(Kup kiz ) (Koy Koo ) oo (Kig Kz ) ooy (Ko K )}

where all termsin each circular vector sum are required
to be consequtive 2-stage sequences as the elements of
this sequence. A circular vector-sum of the consequtive
terms in this ring sequence can have any of the n terms
as its starting point, and can be of any length from 1 to

Volodymyr Riznyk

N-1. The n-stage ring sequence Kyp , for which the set
of all

Sy =n(n- 1), (7)
two-modular vector-sums (mod my, mod my,) forms a
two-dimensional grid over atorus m; x n,, where each
node of the grid occurs exactly R-times, is called a
two-dimensional Ideal Ring Bundle (2D-RB) with
parametersn, R andmy , m, ..
Next, we consider a two-dimensona IRB with four

(n=4) tems of ring topology, where k; = (O,l),
k, =(l,3), Ky =(O,2), K, =(2,3) , the graph of which
is depicted below (Fig. 2).

Fig. 2. Graph of 2D-IRB{(0,1), (1,3), (0,2), (2,3)};
n=4R=1m=3 m=4.

We can easily calculate al circular two-dimensional
vector-sums, modulo my = 3 for the first components of
the vector-sums and modulo m, = 4 for the second ones:

(0,0=(1,3)+(0,2+(2,3);
(1,0)=(0,1)+(1,3)+(1,1)+(1,2);
(0,2); (1,1D)=(1,3)+(0,2);
(0,2);
(1,2)=(0,1)+(1,3)+(0,2);
(0,3=(2,3)+(0,1)+(1,3); (1.3);

(20)=(2,3)+(0,1);
(21)=(02)+(2,3);
(2.2)=(0,2)+(2,3)+(0,1);
(2,3).
As the dements (0,1), (1,3), (0,2), (2,3) of aring
sequence, by themselves, are also circular vector-sums,
the circular vector-sums set isasfollows:

00 (©1) (02 (03
100 (11) @12 (@193
20 21 22 (293

The result of the calculation forms a two-
dimensional grid over thetorus 3 x 4, where 2D modul ar
coordinates of each node of the grid occurs exactly once
(R=1). So, the ring sequence of the 2D vectors {(0,1),
(1,3), (0,2), (2,3) isatwo-dimensional Ideal Ring Bundle
(2D-IRB) with n=4,R=1,m =3, my=4.

The problem of structural optimization of radar or
sonar systems relates to finding the best placement of its
structural elements in spatially distributed systems, as
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well as a better understanding of the role of geometric
gtructure in the behavior of the systems. The research
into this specified mathematica area involves the
appropriate agebraic constructions based on finite
groupsin extensions of Galoisfidds[2].

Classical theory of combinatorial configurations can
hardly be expected effective for constructing 2D or 3D
antenna arrays of high resolution for radar or sonar
systems, as well as for finding the optimal solutions to
other problems related to constructing such systems with
low side lobe antenna. So, for such problems to be
optimally solved, there is a need for an advanced theory
and regular method.

The application of algebraic congtructions and modern
combinatorial analyss provides the optima solution to
many problems of high-resolution interferometry for radar,
data communications, and signal design [11, 12]. The
regular methods for congructing the non-redundant two-
and three-dimensiona n-dement antenna arrays, based on
2D or 3D IRBs are proposed in [11], while the optimal 2D
and 3D coding design is suggested in [12].

Here is an example of constructing a planar antenna
array configuration based on a two-dimensional IRB

with the parameters N=13,R=4,m =5,m,=8, where
S=m "~ m,=5" 8=40, which can be reconstructed
into an antennaarray over 5° 6 = 30 grids (Fig. 3).

@) ©
© ©

© © © ©
© ©

© ©

Fig. 3. Antenna array over 5° 6 grids reconstructed
fromthearray over 5° 8 grids based on the 2D IRB.

The solution we need can be found after congructing the
2D matrix of al drcular two-dimensonal vector-sums on the
2D IRB, with each of them being conddered with regard to
finding minimum of the sum by using crossng out as
depicted in Fg. 3. These methods make it possible to obtain
planar antenna aray configurations having lower peak
siddobe leves than the exiding ones and thus maintain or
improve their resolution.

For any two-dimensional phased antenna array
configurations, the antenna or sensor elements are
positioned in a manner as prescribed by the appropriate
2D Ideal Ring Bundle. The considerable collection of the

2D IRB sets found aso contributes to the obtaining of
optimized planar antenna arays with much more
elements than the currently existing ones, having the low
peak sidelobe levels.

The antenna or sensor ements positioned in a manner
as prescribed by the underlying combinatoria technique
make it possible to configure systems, using the gppropriate
variant of 2D IRB for condructing the radar or sonar planar
antenna arrays. The search dgorithm isemployed to find the
optima solution in the simplest way based on the appropriate
matrix of circular two-dimengond vector-sums on the
auitable 2D IRB, as well as on the crossing out operations.
Clearly, we keep to the known relaionships between the grid
sizesand parameters of a working range to configure a radar
or sonar system.

A three-dimensional Ideal Ring Bundle (3D IRB) is
an n-stage ring sequence of 3-type sub-sequences of the
sequence, which formsthe “perfect” 3- axis vector-space
coordinate system of a finite 3-modular toroida
manifold over the my ©~ mp ~ mg grid. The solution
needed consists in the construction of a 3D matrix based
on the appropriate 3D IKB, for which a set of al
3-modular (mod my, mod m,, mod ) circular sums
enumerate a set of node coordinates over a 3-modular
manifold exactly R-times. The ring sequence

Kap ={(k111k121k13)1(k211k221k23)1---1(kn11kn21kns)}
of 3D termsiscydic, sothat (Ku, ke, k) isfollowed by (ky,
ki, Ki3). A sum of consecutive termsin the 3D ring sequence
can have any of then terms asits garting point, and can be
of any length, with the condition being kept to:

(m,m,,m;)=1. (8)
Such a model makes it possible to configure a
3-modular (mod my, mod m,, mod mg) toroida
manifold over the m; © m, °~ mg grid, each noda
coordinate of the grid occuring exactly R-times.
For example, aring ordered 6-stage (n = 6) sequence
of 3-stage (3D) terms {(0,1,4), (0,2,4), (1,1,1), (1,1,2),
(1,0,3), (0,2,2)} alows a 3-modular (mod2, mod3,mod5)
manifold to be configured over the2” 3~ 5 grid, based
on this 3D IRB. The st of al circular 3-modular vector
sums my = 2, mp = 3, mgp= 5 enumerates the set of the
grid nodes exactly once (R=1):

(0,0,1)° (0,2,2) +(0,1,4)
(0,0,2)° (1,1,2) +(1,0,3)
(0,0,3)° (0,1,4) +(0,2,4)
(0,0,4)° (1,0,3) + (0,2,4) + (0,1,4) + (0,24) + (1,1,1)
Finaly,
(0,00) ° (01,4 + (024 + (1,,1) + (11,2 +
+(1,0,3) +(0,2,2).
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A more general type of the “perfect” combinatorial
configurations are t-dimensional Ideal Ring Bundles as
an n-stage ring sequence {(ki1, ko1, ... ki), (Kio, ko2, ..,
Keo), ... (Kin, Kon, ..., Kin)}. The t-D IRB allows a set of the
nodal coordinates of circular t-modular (mod my, mod
M, ..., mod m) vector sumsonthem,” m,”...” m grid
of atoroidal manifold to be enumerated exactly R- times.

The graphical model of a t-D IRB is given below

(Fig. 4).

Fig. 4. Graphical modd of t-D IRB.

The traditional methods for vector data coding are not
always applicable because the optimization technique that
could be used to solve such a problem requires revison of
many options. To solve the problem, the property of
t-dimensiona IRB can be assumed asa basis of the design
of an optima t-dimensonal binary monoalithic IRB-code
[12]. The underlying code formsa set of combinations from
the same consecutive symbols in each of them. Here are
the examples of four-sage (n = 4) code words of the
Monalithic binary ring code: 0000,

0001, 0010, 0100, 1000,

0011, 0110, 1100, 1001,

0111, 1110, 1101, 1011

For example, the two-dimensona IRB {(0,1),
(1,3), (0,2), (2,3)} provides a possihility of configuring
the optima t-dimensional Mondlithic IRB-code as
follows (Table 5).

Table5
2D-IRB Monalithic Code {(0,1),(1,3), (0,2), (2,3)}

Cyclic binary digits
(1,3 (0,2

Vector

0,2) (2,3)

(00
()
02
03)
(L.9)
Ly
12
(13
(20)
()
(22
(23

Rr|lr|lo|lr|lo|r|o|lr|r|o|lr|o
o|lo|o|o|r|r|r|r|r|lo|lo]|r
o|lr|r|o|lo|r|r|o|lo|lr|o|r
o|lr|r|r|lo|lo|o|o|r|o|o|r

Table 5 contains all binary code combinations of 2D
IRB Monalithic Code {(0,1), (1,3), (0,2), (2,3)} from
(0,0) to (2,3) obtained in only one way.

5. Perfect multi-modular coordinate system

Let us regard a chain n-sequence of non-negative
integer 3-stage sub-sequences of the sequence { (K1, Kio,
Ki3), (Ko, Kaz, k23), y (K1, K2, ki), o, (Ko
Kn2,kn3)} as being cyclic, so that (Kny, Ko, Kqg) is followed
by (ki1, K12, ki13), we call this a three-dimensional ring n-
seguence.

Here we obtain next 3-modular sums of the
connected sub-sequences of a three-dimensiona ring n-
sequence, and modulo my, mp, and Mz sUmmations are as
follows:

(Ku1, Ko, Kiz) + (Koo, Koo, Koz) = ((Kuz + kog)(mod my),
(kiz + ka2)(mod my), (kus + kag)(mod ms);
(Kor, Koo \Koz) + (K1, Kao , ksz) = ((Kertksy)(mod my),
(oot ks2)(mod my), (ks +kas) (Mod m));

(K1, Kiz, Kiz) + (K1, Koo, Kos) + (K1, Kaz, Kag) = ((Kaa + Koy +
+ka) (Mmod my), (Kot koot ksz)(mod my), (Kiz + kay +
+ kss)(mod mg));

(Ku1, Kiz, Kig) + (Ko1, Koo, Kog)+ ... + (Kig, Kiz, Kia) + ... +
+(Kaz, Knzs Knz) = (K + Kot + ...+ kig +...+ Kyg)(mod my),
(kizt+ koo + ...+ K +...+ k) (Mod M), (kaz + kg + ...+ Kz +
+...+ kyz)(mod mg)).

So, we configure a 3-modular my © m,” mg cyclic
matrix as a coordinate axis system based on the ring
n-sequence { (K, Kuo, Kis), (K1, Koz, Kag), ..., (Ki, Kiz, ki),
ey (Kony Kn2,Kna)} -

The threeemodular (mod my, mod m,, mod m)
system of coordinates being the product of three circles
isuseful in visualizing (Fig. 5).

Coordinate axis frame modulo my

/ - . \
i -

| ¢ " Coordinate axis
! ; frame modulo m, \ i

(O,d,O)

! Coordinate axis frame |
\ modulo mg /

Fig. 5. Three-modular (mod my, mod mp, mod ms) system of
coordinates with ground coordinate (0,0,0).
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The ring n-sequence{(kﬂ, k]_z, k13), (kz]_, kzz, kzg),
ceny (ki]_, kig, kig), ceny (kn]_, kn21 kng)}, for which a set of
all 3-modular sums occurs in an enumeration set of node
points space coordinate system my x M, x Mg exactly
R times, is called a perfect 3-modular vector ring. The
three-modular coordinate systems of n-stage perfect
rings are based on their useful property to create a non-
redundant three-modular cyclic system of coordinates
with a ground coordinate (0,0,0) over the torus (n-1) x
X N=MgX MpX M.

Hereis an example of the 3-modular sequence with
n=6m=2 m=3 m=5, and R= 1, which contains
six (N = 6) 3-stage sub-sequences of the sequences:
{(0,2,3), (1,1,2), (0,2,2), (1,0,3), (1,1,1), (0,1,0)} .

The set of al circular sums over the 6-stage
sequence, 3-tuple modulo (mod2, mod3, mod5) gives the
following model of the 3-modular manifold topology
system:

(0,0,0)°{(0,2,3) + (1,1,2)+ (0,2,2)+(1,0,3)+ (0,1,0)}
(0,0,1)°{(0,2,2 + (1,0,3) + (1,1,)}
(0,0,2)°{(1,1,2 + (0,2,2) + (1,0,3)}
(0,0,3)° {(0,2,3) + (0,1,0)}
(0,04)° {(0,2,2) +(1,0,3) + (1,1,1) + (0,1,0) + (0,2,3)}
(0,1,1)° {(0,22)+ (1,0,3) + (1,1,1) + (0,1,0)}
(0,1,2) ° ((1,0,3)+ (1,1,1) + (0,1,0) + (0,2,3)),
(0,1,3)° {(1,1,1)+ (0,1,0)+ (0,2,3)+(1,1,2)+ (0,2,2)}
(0,1,49)° {(0,1,3) + (1,1,2)}
(0,2,0)° {(0,23)+ (1,1,2) + (0,2,2) + (1,0,3)}
0,21 ° {(1,1,1)+ (0,2,0) + (0,2,3) + (1,1,2)}

Findly, (1,24) ° {(023) +(1,1,2) +(1,1,1)+
+(1,0,3)+ (0,1,0)}.

The maximum number Sy = My - My - Mg = 30 of
such sumsis fixed exactly once (R=1), and the set of all
3-modular (2, 3, 5) sums enumerates a set of node
points space coordinate system My X Mp X M.

The optimum t-modular relationship is the n-stage
ring sequence Crg = {(Ku1, K1z, Ki3), (K1, Koz, K23), ...,
(Ki1, Ki2, Kiz), ..., (Kn1, Kn2,Kng)} of non-negative integer
t-stage sub-sequences (tD vectors) of the sequences as
being a cyclic proportion of the n three-dimensiona
vectors. Note, the optima t-modular relationship is a
non-redundant system with respect to partitioning tD
space with the smallest possible number of intersections.

An example of an optimum 3-modular (t=3)
relationship follows from the perfect ring {(0,2,3),
(1,1,2), (0,2,2), (1,0,3), (1,1,1), (0,1,0)}. This optima
3-modular reationship (0,2,3) : (1,1,2) : (0,22 :
(1,03):(1,1,2) : (0,1,0) containssix (N = 6) 3D vectors as

acyclic group in afinite field, and forms a complete set
of 3D vectors over the 3-modular manifold grid.

The applications profiting from the code are
compression, signa reconstruction, operation speed, and
Ssecurity.

The underlying multidimensional models make it
possible to apply the concept of Ideal Ring Bundles to
the configuration of high-performance vector data
information technologies and communication systems,
based on the combinatorial techniques, with the direct
applications to elements positioning in an antenna array,
and design of coded signals for communications.

6. Conclusions

The multi-modular ldeal Ring Bundles (IRB)
provides a new conceptual methodology for improving
the quality indices of vector information technologies
(e.g. vector data coding) with respect to performance
reliability, transmission speed, and functionality, using
novel designs based on the IRB. The applicable property
and structural perfection of one- and multidimensional
IRBs provides the new mathematical principles relating
to the optima placement of structural eements in
spatially or temporally distributed systems. This property
makes the underlying methodol ogy useful for finding the
optimal solutionsto awide class of problemsin the field
of information technologies, including applications in
the design of coded signals for communications and
radars, positioning of elements in an antenna array, and
vector data processing. The useful applications of the
multi-modular IRBs theory are for example, non-
redundant aperture, low-side lobe antenna arrays, and
self-correcting vector data coding. The two- and
multidimensional Ideal Ring Bundles can be well used
for configuring the high performance vector data
information technologies and spatia control systems.
Spatial perfection and structural harmony exist not only
in the abstract models but in the real world aswell.
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MYJbTUMOAYJISIPHA OIITUMIZALIIS
THOOPMAIIMHUX TEXHOJIOI'TI

Bonoaumup Piznuk

Po3risiHyTo HOBY KOHLEIILIiIO B METOAONOT] MOKpaIleHHs
SKICHUX IIOKa3HUKIB BEKTOPHHMX iH(OpMaUiHUX TEXHOJIOrii
(nampuxiian, KOXyBaHHS BEKTOPHHX JaHHX) CTOCOBHO Ha-
IIHOCTI, MBHUAKOCTI EPEeCHIaHHs TaHUX Ta (yHKIiOHAIBHHIX
MOJMJIMBOCTEH, BHKOPHCTOBYIOYM IHHOBaLiiiHI pO3poOKH Ha
OCHOBI BEKTOPHHMX KOMOIHATOpHHMX KOH(QIrypauiif, Takux sk
LMKITIYHI TPy B pPO3IIMPEHHX NOMSIX lanya, pi3HHIEBI
MHOKMHU Ta HOBITHI BEKTOPHI KOMOIHATOpHI KOHCTpPYKIIi.
JlocnmijpkeHHs JBOBUMIPHMX Ta KOMOIHATOPDHHMX CTPYKTYp
BUINOI PO3MIPHOCTI Ja€ 3MOry CTBOPIOBAaTH BEKTOPHI
iH(poOpMarLiifHi CHCTEMHU Ha OCHOBI iJ1eT BUT'1THOTO PO3MIIIICHHS

Ileti wmeTox
MIPOEKTYBAHHS Ja€ 3MOTY HPEJICTaBISATH, OIPalnbOBYBATH,
MepeTBOPIOBATH Ta NepecuaTH iHGOpMalio y BUIIIAAL JBO-
abo 0araTOBHMipHUX BEKTOPHUX IIOTOKIB JIAaHWX 3 MEHIIOO
KiJIbKiCTIO 0a30BHX €JIeMEHTIB, HiX Temep. Mera moisrae y
BHUKOPUCTaHHI BiINOBIIHUX aNreOpUYHIX METOIIB VIS TIOKpa-
[IEHHS TEXHOJIOT1YHO! e(eKTHBHOCTI, BUKOPUCTOBYIOUH KO-
PHCHI BJIACTHBOCTI B3a€MO3B’ A3KiB 11BO- i 0araToMOIyJIsIpHUX
BEKTOPHHUX IMKIIYHHX TPyl Ta 3JIaTHICTh KOHBEPTYBAaHHS
po3MipHOCTI BeKkTOpHHMX iH(opMmauiiinux cucrem. Crarrs
MICTUTh KUJIbKa TPHKJIANB MiHIMi3alii, OB s3aHUX 3 ONTH-
MAQJIBHAM PO3MILIEHHSM CTPYKTYPHHX €JIEMEHTIB y IPOCTO-
poBiii abo uyacoBO po3noAiIeHid iHpopMarliiHii cucTeMi,
30KpeMa 3aCTOCYBaHHS JJIsl po3pOo0JIEHHST KOJOBAaHUX CHTHAJIB
Ul 3B’S3KY 1 pajioNiOKamifHWX CHUTHATIB Ta PO3MIIEHHS
€JIEMEHTIB B aHTEHHHUX PEIliTKaX.

CTPYKTYPHUX €JICMEHTIB Yy oux cCucremax.
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